Math, asked by talpadadilip417, 16 days ago

Evaluate:-
 \\    \red{ \boxed{\displaystyle  \pmb{  \tt\int \: x^{\frac{13}{2}}\left(1+x^{\frac{5}{2}}\right)^{\frac{1}{2}}dx}}}
 \rule{300pt}{0.1pt}

༒ Bʀᴀɪɴʟʏ Sᴛᴀʀs

༒Mᴏᴅᴇʀᴀᴛᴇʀs

༒Other best user

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given integral is

\rm \: \displaystyle{ \tt\int \: x^{\frac{13}{2}}\left(1+x^{\frac{5}{2}}\right)^{\frac{1}{2}}dx} \\

can be rewritten as

\rm \: =  \displaystyle{ \tt\int \: x^{5 + \frac{3}{2}}\left(1+x^{\frac{5}{2}}\right)^{\frac{1}{2}}dx} \\

can be further rewritten as

\rm \:  = \displaystyle{ \tt\int \: {x}^{5}  x^{ \frac{3}{2}}\left(1+x^{\frac{5}{2}}\right)^{\frac{1}{2}}dx} \\

\rm \:  = \displaystyle{ \tt\int \:  {( {x}^{ \frac{5}{2}}) }^{2}  x^{ \frac{3}{2}}\left(1+x^{\frac{5}{2}}\right)^{\frac{1}{2}}dx} \\

Now, Substitute

\rm \:  \sqrt{1 +  {x}^{ \frac{5}{2} } }  = y \\

\rm \:  1 +  {x}^{ \frac{5}{2} }  =  {y}^{2}  \\

\rm \:  {x}^{ \frac{5}{2} }  =  {y}^{2} - 1  \\

\rm \:  \frac{5}{2}  {x}^{ \frac{3}{2} } dx =  2y \: dy \\

\rm \:  {x}^{ \frac{3}{2} } dx =  \frac{4y}{5} \: dy \\

So, on substituting these values, we get

\rm \:  = \displaystyle{ \tt\int \:  {( {y}^{2}  - 1) }^{2}  \times y \times  \frac{4y}{5} dx} \\

\rm \:  =  \frac{4}{5} \displaystyle{ \tt\int \: {y}^{2} {( {y}^{2}  - 1) }^{2} dx} \\

\rm \:  =  \frac{4}{5} \displaystyle{ \tt\int \: {y}^{2}( {y}^{4} + 1 -  {2y}^{2}) dx} \\

\rm \:  =  \frac{4}{5} \displaystyle{ \tt\int \:( {y}^{6} +  {y}^{2}  -  {2y}^{4}) dx} \\

\rm \:  =  \dfrac{4}{5}\bigg(\dfrac{ {y}^{7} }{7}  + \dfrac{ {y}^{3} }{3}  - \dfrac{ {2y}^{5} }{5}  \bigg) + c   \\

\rm \:  =  \dfrac{4}{5}\bigg(\dfrac{ {(\sqrt{1 +  {x}^{ \frac{5}{2} } }) \: }^{7} }{7}  + \dfrac{ {(\sqrt{1 +  {x}^{ \frac{5}{2} } }) \: }^{3} }{3}  - \dfrac{ {2(\sqrt{1 +  {x}^{ \frac{5}{2} } }) \: }^{5} }{5}  \bigg) + c   \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Answered by nihasrajgone2005
1

\huge\red{A}\pink{N}\orange{S} \green{W}\blue{E}\gray{R} =

Given integral is

\begin{gathered}\rm \: \displaystyle{ \tt\int \: x^{\frac{13}{2}}\left(1+x^{\frac{5}{2}}\right)^{\frac{1}{2}}dx} \\ \end{gathered} </p><p>∫x </p><p>2</p><p>13</p><p></p><p> </p><p> (1+x </p><p>2</p><p>5</p><p></p><p> </p><p> ) </p><p>2</p><p>1</p><p> dx

can be rewritten as

\begin{gathered}\rm \: = \displaystyle{ \tt\int \: x^{5 + \frac{3}{2}}\left(1+x^{\frac{5}{2}}\right)^{\frac{1}{2}}dx} \\ \end{gathered} </p><p>=∫x </p><p>5+ </p><p>2</p><p>3</p><p></p><p> </p><p> (1+x </p><p>2</p><p>5</p><p></p><p> </p><p> ) </p><p>2</p><p>1</p><p></p><p> </p><p> dxcan be further rewritten as

\begin{gathered}\rm \: = \displaystyle{ \tt\int \: {x}^{5} x^{ \frac{3}{2}}\left(1+x^{\frac{5}{2}}\right)^{\frac{1}{2}}dx} \\ \end{gathered} </p><p>=∫x </p><p>5</p><p> x </p><p>2</p><p>3</p><p></p><p> </p><p> (1+x </p><p>2</p><p>5</p><p></p><p> </p><p> ) </p><p>2</p><p>1</p><p></p><p> </p><p> dx

\begin{gathered}\rm \: = \displaystyle{ \tt\int \: {( {x}^{ \frac{5}{2}}) }^{2} x^{ \frac{3}{2}}\left(1+x^{\frac{5}{2}}\right)^{\frac{1}{2}}dx} \\ \end{gathered} </p><p>=∫(x </p><p>2</p><p>5</p><p></p><p> </p><p> ) </p><p>2</p><p> x </p><p>2</p><p>3</p><p></p><p> </p><p> (1+x </p><p>2</p><p>5</p><p></p><p> </p><p> ) </p><p>2</p><p>1</p><p></p><p> </p><p> dx

Now, Substitute

\begin{gathered}\rm \: \sqrt{1 + {x}^{ \frac{5}{2} } } = y \\ \end{gathered} </p><p>1+x </p><p>2</p><p>5</p><p></p><p> </p><p> </p><p></p><p> =y</p><p>

\begin{gathered}\rm \: 1 + {x}^{ \frac{5}{2} } = {y}^{2} \\ \end{gathered} </p><p>1+x </p><p>2</p><p>5</p><p></p><p> </p><p> =y </p><p>2</p><p>

\begin{gathered}\rm \: {x}^{ \frac{5}{2} } = {y}^{2} - 1 \\ \end{gathered} </p><p>x </p><p>2</p><p>5</p><p></p><p> </p><p> =y </p><p>2</p><p> −1

\begin{gathered}\rm \: \frac{5}{2} {x}^{ \frac{3}{2} } dx = 2y \: dy \\ \end{gathered} </p><p>2</p><p>5</p><p></p><p> x </p><p>2</p><p>3</p><p></p><p> </p><p> dx=2ydy</p><p>

\begin{gathered}\rm \: {x}^{ \frac{3}{2} } dx = \frac{4y}{5} \: dy \\ \end{gathered} </p><p>x </p><p>2</p><p>3</p><p></p><p> </p><p> dx= </p><p>5</p><p>4y</p><p></p><p> dy

So, on substituting these values, we get

\begin{gathered}\rm \: = \displaystyle{ \tt\int \: {( {y}^{2} - 1) }^{2} \times y \times \frac{4y}{5} dx} \\ \end{gathered} </p><p>=∫(y </p><p>2</p><p> −1) </p><p>2</p><p> ×y× </p><p>5</p><p>4y</p><p></p><p> dx</p><p>

\begin{gathered}\rm \: = \frac{4}{5} \displaystyle{ \tt\int \: {y}^{2} {( {y}^{2} - 1) }^{2} dx} \\ \end{gathered} </p><p>= </p><p>5</p><p>4</p><p></p><p> ∫y </p><p>2</p><p> (y </p><p>2</p><p> −1) </p><p>2</p><p> dx

\begin{gathered}\rm \: = \frac{4}{5} \displaystyle{ \tt\int \: {y}^{2}( {y}^{4} + 1 - {2y}^{2}) dx} \\ \end{gathered} </p><p>= </p><p>5</p><p>4</p><p></p><p> ∫y </p><p>2</p><p> (y </p><p>4</p><p> +1−2y </p><p>2</p><p> )dx

\begin{gathered}\rm \: = \frac{4}{5} \displaystyle{ \tt\int \:( {y}^{6} + {y}^{2} - {2y}^{4}) dx} \\ \end{gathered} </p><p>= </p><p>5</p><p>4</p><p></p><p> ∫(y </p><p>6</p><p> +y </p><p>2</p><p> −2y </p><p>4</p><p> )dx

\begin{gathered}\rm \: = \dfrac{4}{5}\bigg(\dfrac{ {y}^{7} }{7} + \dfrac{ {y}^{3} }{3} - \dfrac{ {2y}^{5} }{5} \bigg) + c \\ \end{gathered} </p><p>= </p><p>5</p><p>4</p><p></p><p> ( </p><p>7</p><p>y </p><p>7</p><p> </p><p></p><p> + </p><p>3</p><p>y </p><p>3</p><p> </p><p></p><p> − </p><p>5</p><p>2y </p><p>5</p><p> </p><p></p><p> )+c</p><p>

Additional Information :-

\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) &amp; \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} &amp; \frac{\qquad \qquad}{} \\ \sf k &amp; \sf kx + c \\ \\ \sf sinx &amp; \sf - \: cosx+ c \\ \\ \sf cosx &amp; \sf \: sinx + c\\ \\ \sf {sec}^{2} x &amp; \sf tanx + c\\ \\ \sf {cosec}^{2}x &amp; \sf - cotx+ c \\ \\ \sf secx \: tanx &amp; \sf secx + c\\ \\ \sf cosecx \: cotx&amp; \sf - \: cosecx + c\\ \\ \sf tanx &amp; \sf logsecx + c\\ \\ \sf \dfrac{1}{x} &amp; \sf logx+ c\\ \\ \sf {e}^{x} &amp; \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}\end{gathered} </p><p>f(x)</p><p></p><p> </p><p>k</p><p>sinx</p><p>cosx</p><p>sec </p><p>2</p><p> x</p><p>cosec </p><p>2</p><p> x</p><p>secxtanx</p><p>cosecxcotx</p><p>tanx</p><p>x</p><p>1</p><p></p><p> </p><p>e </p><p>x</p><p> </p><p></p><p>  </p><p>∫f(x)dx</p><p></p><p> </p><p>kx+c</p><p>−cosx+c</p><p>sinx+c</p><p>tanx+c</p><p>−cotx+c</p><p>secx+c</p><p>−cosecx+c</p><p>logsecx+c</p><p>logx+c</p><p>e </p><p>x</p><p> +c</p><p>

Similar questions