Math, asked by PragyaTbia, 1 year ago

Evaluate:
\rm \displaystyle \lim_{x\to 0}\ \frac{1-\cos 2x+\tan^{2} x}{x\sin x}

Answers

Answered by vivek007146
0
hope it is clear....if so mark it as brilliant
Attachments:
Answered by abhi178
1

we have to Evaluate:

\rm \displaystyle \lim_{x\to 0}\ \frac{1-\cos 2x+\tan^{2} x}{x\sin x}

first of all, we have to check form of the limit. i.e., 0/0, ∞/∞, ∞ - ∞, 0.∞, 1^∞, 0^∞, ∞^0.

putting, x = 0 in function, f(x) = {1-cos2x + tan²x }/(xsinx)

f(0) = {1 - cos2(0) + tan²(0)}/(0sin(0))

= {1 - 1 + 0}/0

= 0/0 , it is the form of limit.

now, Evaluate:

\rm \displaystyle \lim_{x\to 0}\ \frac{1-\cos 2x+\tan^{2} x}{x\sin x}

= \displaystyle\lim_{x\to 0}\frac{(1-cos2x)}{xsinx}+\displaystyle\lim_{x\to 0}\frac{tan^2x}{xsinx}

= \displaystyle\lim_{x\to 0}\frac{2sin^2x}{xsinx}+\displaystyle\lim_{x\to 0}\frac{sinx sec^2x}{x}

= 2\displaystyle\lim_{x\to 0}\frac{sinx}{x}+\displaystyle\lim_{x\to 0}\frac{sinx}{x}sec^2x

we know, \displaystyle\lim_{x\to 0}\frac{sinx}{x}=1

\displaystyle\lim_{x\to 0}\frac{tanx}{x}=1

= 2 × 1 + 1

= 3 [ Ans]

Similar questions
Math, 1 year ago