Math, asked by PragyaTbia, 1 year ago

Evaluate:
\rm \displaystyle \lim_{x \to 0}\ \frac{3^{x}+5^{x}-2^{x+1}}{\sin x}

Answers

Answered by abhi178
0

we have to evaluate, \rm \displaystyle \lim_{x \to 0}\ \frac{3^{x}+5^{x}-2^{x+1}}{\sin x}

check form of the limit.

putting, x = 0 , in f(x) = {3^x + 5^x - 2^(x+1)}/sinx

f(0) = {3^0 + 5^0 - 2^(0 + 1)}/sin(0)

= {1 + 1- 2}/0

= 0/0 hence, it is in the form of limit.

now, \rm \displaystyle \lim_{x \to 0}\ \frac{3^{x}+5^{x}-2^{x+1}}{\sin x}

= \displaystyle\lim_{x\to 0}\frac{(3^x+5^x-2.2^x}{sinx}

= \displaystyle\lim_{x\to 0}\frac{\frac{3^x-1}{x}\times x+\frac{5^x-1}{x}\times x-2\frac{2^x-1}{x}\times x}{x\frac{sinx}{x}}

we know,

\displaystyle\lim_{x\to 0}\frac{a^x-1}{x}=loga

and \displaystyle\lim_{x\to 0}\frac{sinx}{x}=1

= \displaystyle\lim_{x\to 0}\frac{xlog3+xlog5-2xlog2}{x.1}

= (log3+ log5 - 2log2)/1

= {log(3 × 5) - log2²}

= log(15/4) [ans]

Answered by ujalasingh385
0

Answer:

log(\frac{15}{4})

Step-by-step explanation:

In this question,

We have to evaluate, \rm \displaystyle \lim_{x \to 0}\ \frac{3^{x}+5^{x}-2^{x+1}}{\sin x}

Now we will check form of the limit.

Putting, x = 0 , in f(x) = \frac{3^{x} + 5^{x} - 2^{(x+1)}}{sinx}

f(0) =\frac{3^{0} + 5^{0} - 2^{(0 + 1)}}{sin(0)}

= \frac{{1 + 1- 2}}{0}

= 0/0 hence, it is in the form of limit.

Now,  \rm \displaystyle \lim_{x \to 0}\ \frac{3^{x}+5^{x}-2^{x+1}}{\sin x}

= \displaystyle\lim_{x\to 0}\frac{(3^x+5^x-2.2^x}{sinx}

= \displaystyle\lim_{x\to 0}\frac{\frac{3^x-1}{x}\times x+\frac{5^x-1}{x}\times x-2\frac{2^x-1}{x}\times x}{x\frac{sinx}{x}}

We know,

\mathbf{\displaystyle\lim_{x\to 0}\frac{a^x-1}{x}=loga}

and \mathbf{\displaystyle\lim_{x\to 0}\frac{sinx}{x}=1}

= \displaystyle\lim_{x\to 0}\frac{xlog3+xlog5-2xlog2}{x.1}

= \frac{(log3+ log5 - 2log2)}{1}

= {log(3 × 5) - log2²}

= log(\frac{15}{4})

Similar questions