Math, asked by PragyaTbia, 1 year ago

Evaluate:
\rm \displaystyle \lim_{x \to 0}\ \frac{9^{x}-5^{x}}{4^{x}-1}

Answers

Answered by villageboy
4
❤see in the given pic
Attachments:
Answered by jitumahi89
0

Answer:

,\rm \displaystyle \lim_{x \to 0}\ \frac{9^{x}-5^{x}}{4^{x}-1} = \frac{log\frac{9}{5} }{log4}

Step-by-step explanation:

SInce we need to evaluate the \rm \displaystyle \lim_{x \to 0}\ \frac{9^{x}-5^{x}}{4^{x}-1}

Apply directly \lim_{x\to 0} we get ,

\frac{9^{0}-5^{0}}{4^{0}-1 } =\frac{1-1}{1-1}= \frac{0}{0}

We know that 9^{0} = 1, 5^{0} =1 and 4^{0} = 1

So, apply L'Hospital rule (Differentiate the function with respect to its variable x ) we get,

We get \frac{9^{x}log9-5^{x}log5 }{4^{x}log4}

Apply limit we get

\frac{log9-log5}{log4} = \frac{log\frac{9}{5} }{log4}

So,\rm \displaystyle \lim_{x \to 0}\ \frac{9^{x}-5^{x}}{4^{x}-1} = \frac{log\frac{9}{5} }{log4}

Similar questions
Math, 1 year ago
Math, 1 year ago