Math, asked by PragyaTbia, 1 year ago

Evaluate:
\rm \displaystyle \lim_{x \to 0}\ \frac{\log x+\log \Big(\frac{1+x}{x}\Big)}{x}

Answers

Answered by Anonymous
0
HOPE IT HELPS U ✌️✌️✌️
Attachments:
Answered by shailendrachoubay456
0

Answer:

\rm \displaystyle \lim_{x \to 0}\ \frac{\log x+\log \Big(\frac{1+x}{x}\Big)}{x} = \infty

Step-by-step explanation:

Since we have given \rm \displaystyle \lim_{x \to 0}\ \frac{\log x+\log \Big(\frac{1+x}{x}\Big)}{x}

so, apply limit x tends to 0 directly we get

\dfrac{log0 +log1}{0} which is \dfrac{0}{0} form so, apply l'hospital rule i.e. differentiated each function with respect to its variable we get.

\rm \displaystyle \lim_{x \to 0}\ \frac{\frac{1}{x} +\ \Big(\frac{1}{\frac{1+x}{x}}\Big)(\frac{-1}{x^{2} }) }{1}

Now apply limit we get

\rm \displaystyle \ \frac{\frac{1}{0} +\ \Big(\frac{1}{\frac{1+0}{0}}\Big)(\frac{-1}{0^{2} }) }{1}

we get \infty

\rm \displaystyle \lim_{x \to 0}\ \frac{\log x+\log \Big(\frac{1+x}{x}\Big)}{x} = \infty

Similar questions
Math, 1 year ago
Math, 1 year ago