Math, asked by PragyaTbia, 1 year ago

Evaluate
\rm \displaystyle \lim_{x\to 0}\ \frac{\sqrt{x+2}-\sqrt{2}}{x}

Answers

Answered by miana18
1
mark as brainliest if this helps u
Attachments:
Answered by mysticd
1
Solution :

\rm \displaystyle \lim_{x\to 0}\ \frac{\sqrt{x+2}-\sqrt{2}}{x}

= \rm \displaystyle \lim_{x\to 0}\ \frac{\sqrt{x+2}-\sqrt{2} \times (\sqrt{x+2}+\sqrt{2})}{x \times (\sqrt{x+2}+\sqrt{2})}

=\rm \displaystyle \lim_{x\to 0}\ \frac{(\sqrt{x+2})^{2}-(\sqrt{2})^{2}}{x \times (\sqrt{x+2}+\sqrt{2})}

= \rm \displaystyle \lim_{x\to 0}\ \frac{( x + 2 - 2 )}{x \times (\sqrt{x+2} + \sqrt{2})}
= \rm \displaystyle \frac{1}{(\sqrt{2+2}+ \sqrt{2})}

= 1/(2 + √2 )

•••
Similar questions