Math, asked by PragyaTbia, 1 year ago

Evaluate:
\rm \displaystyle \lim_{x \to \infty}\ \frac{(2x-3)^{2}(3x+2)^{3}}{(2x+1)^{5}}

Answers

Answered by hukam0685
0
To evaluate those limits having x goes to infinite.look
\lim_{x \to \infty}\ \frac{(2x-3)^{2}(3x+2)^{3}}{(2x+1)^{5}} \\  \\ \lim_{x \to \infty}\ \frac{ {x}^{2} (2- \frac{3}{x} )^{2} {x}^{3} (3+ \frac{2}{x} )^{3}}{ {x}^{5} (2+ \frac{1}{x} )^{5}} \\  \\ \lim_{x \to \infty}\ \frac{ {x}^{5} (2- \frac{3}{x} )^{2} (3+ \frac{2}{x} )^{3}}{ {x}^{5} (2+ \frac{1}{x} )^{5}} \\ \\ \lim_{x \to \infty}\ \frac{ (2- \frac{3}{x} )^{2} (3+ \frac{2}{x} )^{3}}{ (2+ \frac{1}{x} )^{5}} \\  \\ apply \: limit \\  \\ \frac{ (2- \frac{3}{ \infty } )^{2} (3+ \frac{2}{ \infty } )^{3}}{ (2+ \frac{1}{ \infty } )^{5}} \\  \\  \\  = \frac{ (2- 0 )^{2} (3 + 0 )^{3}}{ (2+ 0 )^{5}} \\  \\   = \frac{4 \times 27}{32}  \\  \\ \lim_{x \to \infty}\ \frac{(2x-3)^{2}(3x+2)^{3}}{(2x+1)^{5}} =  \frac{27}{8}  \\  \\
Hope it helps.
Similar questions
Math, 1 year ago