Math, asked by CyberBeast, 1 day ago


Evaluate:

\rm \displaystyle \lim_{x\to \pi}\ \frac{\sqrt{1-\cos x}-\sqrt{2}}{\sin^{2} x}


Answers

Answered by mathdude500
30

\large\underline{\sf{Solution-}}

Given expression is

\rm \:  \: \displaystyle \lim_{x\to \pi}\ \frac{\sqrt{1-\cos x}-\sqrt{2}}{\sin^{2} x}

If we substitute directly the value of x, we get

\rm \:  =  \:  \: \ \dfrac{\sqrt{1-\cos \pi}-\sqrt{2}}{\sin^{2} \pi} \\

\rm \:  =  \:  \: \ \dfrac{\sqrt{1- ( - 1)}-\sqrt{2}}{0} \\

\rm \:  =  \:  \: \ \dfrac{\sqrt{2}-\sqrt{2}}{0} \\

\rm \:  =  \:  \: \ \dfrac{0}{0} \\

which is indeterminant form.

So, Consider again

\rm \: \displaystyle \lim_{x\to \pi}\ \frac{\sqrt{1-\cos x}-\sqrt{2}}{\sin^{2} x} \\

On rationalizing the denominator, we get

\rm \:  =  \: \displaystyle \lim_{x\to \pi}\ \frac{\sqrt{1-\cos x}-\sqrt{2}}{\sin^{2} x}  \times  \frac{ \sqrt{1 - cosx}  +  \sqrt{2} }{ \sqrt{1 - cosx}  +  \sqrt{2} }  \\

\rm \:  =  \: \displaystyle \lim_{x\to \pi}\ \frac{ {( \sqrt{1 - cosx} )}^{2}  - ( { \sqrt{2} )}^{2} }{\sin^{2} x( \sqrt{1 -  cosx}  +  \sqrt{2} )} \\

\rm \:  =  \: \displaystyle \lim_{x\to \pi} \:  \frac{1}{\sqrt{1 -  cosx}  +  \sqrt{2} }  \times \displaystyle \lim_{x\to \pi}\ \frac{1 - cosx - 2 }{\sin^{2} x} \\

\rm \:  =  \:  \:  \frac{1}{\sqrt{1 -  cos\pi}  +  \sqrt{2} }  \times \displaystyle \lim_{x\to \pi}\ \frac{ - cosx - 1}{1 - \cos^{2} x} \\

\rm \:  =  \:  \:  \frac{1}{\sqrt{1 -  ( - 1)}  +  \sqrt{2} }  \times \displaystyle \lim_{x\to \pi}\ \frac{ - (cosx + 1)}{(1 - cosx)(1 + cosx} \\

\rm \:  =  \:  \:  \frac{1}{\sqrt{2}  +  \sqrt{2} }  \times \displaystyle \lim_{x\to \pi}\ \frac{ - 1}{(1 - cosx)} \\

\rm \:  =  \:  \:  \frac{1}{2\sqrt{2} }  \times \ \frac{ - 1}{(1 - cos\pi)} \\

\rm \:  =  \:  \:  \frac{1}{2\sqrt{2} }  \times \ \frac{ - 1}{1 - ( - 1)} \\

\rm \:  =  \:  \:  \frac{1}{2\sqrt{2} }  \times \ \frac{ - 1}{2} \\

\rm \:  =  \:  \:  -  \:  \frac{1}{4\sqrt{2} }   \\

Hence,

\rm\implies \: \:  \boxed{\sf{  \:\: \displaystyle \lim_{x\to \pi}\ \frac{\sqrt{1-\cos x}-\sqrt{2}}{\sin^{2} x} =  \: -  \: \frac{1}{4 \sqrt{2} } \:  \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Formulae Used :-

\boxed{\sf{  \:cos\pi \:  =  \:  -  \: 1 \: }} \\

\boxed{\sf{  \:sin\pi \:  =  \:  \: 0 \: }} \\

\boxed{\sf{   \:  \:  {sin}^{2}x +  {cos}^{2}x = 1 \:  \: }} \\

\boxed{\sf{  \:(x + y)(x - y) =  {x}^{2} -  {y}^{2}  \:  \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information

\boxed{\sf{  \:\displaystyle \lim_{x\to 0} \:  \frac{sinx}{x} = 1 \: }} \\

\boxed{\sf{  \:\displaystyle \lim_{x\to 0} \:  \frac{tanx}{x} = 1 \: }} \\

\boxed{\sf{  \:\displaystyle \lim_{x\to 0} \:  \frac{log(1 + x)}{x} = 1 \: }} \\

\boxed{\sf{  \:\displaystyle \lim_{x\to 0} \:  \frac{ {e}^{x}  - 1}{x} = 1 \: }} \\

\boxed{\sf{  \:\displaystyle \lim_{x\to 0} \:  \frac{ {a}^{x}  - 1}{x} = loga \: }} \\

Answered by swaransingh49957
3

Answer:

ello

gud mrng

hru

(≡^∇^≡)

Similar questions