Math, asked by SorkoZom, 4 months ago

Evaluate :

\sf{\cfrac{5{Cos}^{2}60°+4{Cos}^{2}30°-{Tan}^{2}45°}{{Sin}^{2}30°+{Cos}^{2}30°}}

Answers

Answered by Anonymous
12

Given :

  • \sf{\cfrac{5{Cos}^{2}60°+4{Cos}^{2}30°-{Tan}^{2}45°}{{Sin}^{2}30°+{Cos}^{2}30°}}

According to the question :

\\\implies\bf\sf{\frac{5{Cos}^{2}60°+4{Cos}^{2}30°-{Tan}^{2}45°}{{Sin}^{2}30°+{Cos}^{2}30°}}

\\\implies\bf\sf{Sin^{2}30°+ {Cos^{2}30°} = {Sin^{2}\:θ+Cos^{2}\:θ = 1}}

\\\implies\bf\sf{cos\:60°\:=\:{ \frac{1}{2}}}\:and\:{sec\:60°\:=\:{ \frac{2}{ \sqrt{3}}}}

Substituting those values,

\\\implies\bf\sf{ \frac{5\:×\:(1/2)^{2}\:+\:4\:×\:(2/√3)^{2}\:-\:12}{1}}

\\\implies\bf\sf{ \frac{5}{4}}\:+\:4\:({ \frac{4}{3}})\:-\:1

\\\implies\bf\sf{ \frac{5}{4}}\:+\:4\:({ \frac{16}{3}})\:-\:1

\\\implies\bf\sf{ \frac{15\:+\:64\:-\:12}{12}}

\\\implies\bf\sf{ \frac{67}{12}}

\\\implies\bf\sf5\:{ \frac{7}{12}}

Note : While viewing the answer, Scroll a little to see full answer !

So Its Done !!

Similar questions