Evaluate
Answers
Answered by
23
Step-by-step explanation:
(sinθ+cosθ)2+(sinθ−cosθ)2
=(sin2θ+cos2θ+2sinθcosθ)+(sin2θ+cos2θ−2sinθcosθ)
=(1+2sinθcosθ)+(1−2sinθcosθ)
=1+2sinθcosθ+1−2sinθcosθ
=1+1=2
∴(sinθ+cosθ)2+(sinθ−cosθ)2=2
Answered by
0
Answer:
(cosθ+sinθ)2+(cosθ−sinθ)2=cos2θ+sin2θ+2sinθcosθ+cos2θ+sin2θ−2sinθcosθ
=2(cos2θ+sin2θ)
=2(1)=2
Similar questions