Math, asked by Noah11, 1 year ago

Evaluate:

 \sin25° \cos65° +  \cos25° \sin65°

Answers

Answered by TheTotalDreamer
26
Heya,

We know that,

sin( A + B ) = sinAcosB + cosAsinB

Given, sin25°cos65° + cos25°sin65°

Let A=25° and B=65°

=sin( 25 + 65 )

= sin90

= 1 Answer...

HOPE IT HELPS:-))

Noah11: thank you! :)
TheTotalDreamer: my pleasure (^^)
Noah11: :)
Inflameroftheancient: gr8
TheTotalDreamer: thanks :-)
Answered by siddhartharao77
36

Method - 1:

Given : sin 25° cos 65° + cos 25° sin 65°

⇒ sin 25 cos (90 - 25) + cos 25 sin (90 - 25)

⇒ sin 25 sin 25 + cos 25 cos 25

⇒ sin^2 25 + cos ^2 25

We know that sin^2 A + cos^2 A = 1

⇒ 1.


Method - 2 :

Given : sin ° 25 cos 65° + cos 25° sin 65°

We know that  sinA cos B + cos A sin B = sin(A + B)

⇒ sin(25 + 65)

⇒ sin 90

⇒ 1.



Hope this helps!


Anonymous: noah
Anonymous: You blocked me !!
Inflameroftheancient: Now you're blocked from Brainly, forever..
SillySam: Sir!! Can you pls explain me the method 2 . (Or any other user)
siddhartharao77: What doubt u r having in it..I have just applied the values in the formula.. Thats it..There a = 25, b = 65.
SillySam: actually, I am not so used to with this formula.
SillySam: I want to ask How this formula came?
SillySam: ok
SillySam: I am asking a question..
siddhartharao77: Check this link http://www.math.sjsu.edu/~simic/Fall04/Math133A/trig.pdf
Similar questions