Math, asked by ITZSnowyBoy, 11 days ago

Evaluate :  \sqrt{ \frac{1 + x}{1 - x} dx \: x≠1}

Notice :
Don't Spam
Don't Give Copied Answers
I need help so give with full explanation ​

Answers

Answered by mathdude500
24

Appropriate Question :-

Evaluate :-

\rm :\longmapsto\:\displaystyle\int\rm  \sqrt{ \frac{1 + x}{1 - x} } \: dx

 \green{\large\underline{\sf{Solution-}}}

Given integral is

\rm :\longmapsto\:\displaystyle\int\rm  \sqrt{ \frac{1 + x}{1 - x} } \: dx

To evaluate this integral, we first rationalizing the denominator, so on rationalizing the denominator, we get

\rm \:  =  \: \displaystyle\int\rm  \sqrt{ \frac{1 + x}{1 - x}  \times  \frac{1 + x}{1 + x} }  \: dx

\rm \:  =  \: \displaystyle\int\rm  \sqrt{ \frac{ {(1 + x)}^{2} }{1 -  {x}^{2} } }  \: dx

\rm \:  =  \: \displaystyle\int\rm  \frac{1 + x}{ \sqrt{1 -  {x}^{2} } }  \: dx

\rm \:  =  \: \displaystyle\int\rm  \frac{1}{ \sqrt{1 -  {x}^{2} } }  \: dx \:  +  \: \displaystyle\int\rm  \frac{x}{ \sqrt{1 -  {x}^{2} } }  \: dx

\rm \:  =  \:  {sin}^{ - 1}x  - \dfrac{1}{2}  \displaystyle\int\rm  \frac{ - 2x}{ \sqrt{1 -  {x}^{2} } }

We know,

 \boxed{ \rm{ \: \displaystyle\int\rm  \frac{f'(x)}{ \sqrt{f(x)} }  = 2 \sqrt{f(x)}  + c \: }}

and

\red{\rm :\longmapsto\:\dfrac{d}{dx}(1 -  {x}^{2}) =  - 2x \: }

So, using this, we get

\rm \:  =  \:  {sin}^{ - 1}x - \dfrac{1}{2}  \times 2 \sqrt{1 -  {x}^{2} } + c

\rm \:  =  \:  {sin}^{ - 1}x -\sqrt{1 -  {x}^{2} } + c

Hence,

 \boxed{\displaystyle\int\rm  \sqrt{ \frac{1 + x}{1 - x} } \: dx  =  \:  {sin}^{ - 1}x -\sqrt{1 -  {x}^{2} } + c \: }

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to Know :-

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Answered by technogamespro
0

Answer:

hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi

Similar questions