Math, asked by Anonymous, 3 months ago

Evaluate
 \to  \bf  \displaystyle\int ^{  \frac{\pi}{4} }  _{0} \bf{log(1 + tanx)dx}

Answers

Answered by Asterinn
21

 \rm\longrightarrow \rm I =  \displaystyle\int ^{  \rm \: \frac{\pi}{4} } _{0} \rm{log(1 + tanx)dx}

Let above expression be equation (1).

We know that :-

 \boxed{\rm  \bf \displaystyle\int ^{ a} _{0} \bf f(x)  \: dx= \bf \displaystyle\int ^{ a} _{0} \bf f(a - x)  \: dx}

 \rm\longrightarrow \rm I =  \displaystyle\int ^{  \rm \: \frac{\pi}{4} } _{0} \rm{log(1 + tan( \frac{\pi}{4}  - x))dx}

We know :-

 \boxed { \bf tan(a - b) =  \frac{tan \: a - tan \: b}{1 + (tan \: a  \times  tan \: b)} }

\rm\longrightarrow \rm I =  \displaystyle\int ^{  \rm \: \frac{\pi}{4} } _{0} \rm{log \bigg(1 +  \frac{tan \frac{\pi}{4}  - tan \: x}{1 + (tan\frac{\pi}{4} \times tan \: x)}  \bigg)dx}

\rm\longrightarrow \rm I =  \displaystyle\int ^{  \rm \: \frac{\pi}{4} } _{0} \rm{log \bigg(1 +  \frac{1- tan \: x}{1 +  tan \: x}  \bigg)dx}

\rm\longrightarrow \rm I =  \displaystyle\int ^{  \rm \: \frac{\pi}{4} } _{0} \rm{log \bigg( \frac{1 +  tan \: x + 1- tan \: x}{1 +  tan \: x}  \bigg)dx}

\rm\longrightarrow \rm I =  \displaystyle\int ^{  \rm \: \frac{\pi}{4} } _{0} \rm{log \bigg( \frac{2}{1 +  tan \: x}  \bigg)dx}

We know :-

 \boxed {\rm log( \dfrac{a}{b} ) = log \: a - log \: b }

\rm\longrightarrow \rm I =  \displaystyle\int ^{  \rm \: \frac{\pi}{4} } _{0} \rm \bigg( log( 2) \:  -  log(1 + tan \: x) \bigg) dx

\rm\longrightarrow \rm I =  \displaystyle\int ^{  \rm \: \frac{\pi}{4} } _{0} \rm log( 2) \: dx \:  -  \displaystyle\int ^{  \rm \: \frac{\pi}{4} } _{0}  \rm log(1 + tan \: x) dx

From equation (1) :-

\rm\longrightarrow \rm I =  \displaystyle\int ^{  \rm \: \frac{\pi}{4} } _{0} \rm log( 2) dx\:  -  I

\rm\longrightarrow \rm 2I =  \displaystyle\int ^{  \rm \: \frac{\pi}{4} } _{0} \rm log( 2)  \: dx

\rm\longrightarrow \rm 2I =  \displaystyle \rm log( 2)\int ^{  \rm \: \frac{\pi}{4} } _{0} \rm1  \: dx

\rm\longrightarrow \rm 2I =  \displaystyle \rm log( 2) \bigg [ \:  x \: \bigg]^{  \rm \: \frac{\pi}{4} } _{0}

\rm\longrightarrow \rm 2I =  \displaystyle \rm log( 2)     \: ( \frac{\pi}{4}  - 0)

\rm\longrightarrow \rm I =  \displaystyle \rm \frac{\pi}{8} \: log( 2)

Similar questions