Math, asked by rhssrivalli, 3 months ago

Evaluate the above expression​

Attachments:

Answers

Answered by mathdude500
5

\large\underline{\bold{Given \:Question - }}

\rm :\longmapsto\:Solve :  \:  log_{2}( log_{2}( log_{5}(625) ) )

\large\underline{\sf{Solution-}}

Given

\rm :\longmapsto\ \:  log_{2}( log_{2}( log_{5}(625) ) )

Let consider,

\rm :\longmapsto\: log_{5}(625)

 \rm \:  =  \:  \:  log_{5}(5 \times 5 \times 5 \times 5)

 \rm \:  =  \:  \:  log_{5}( {5}^{4} )

 \rm \:  =  \:  \: 4 \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \bf{\blue{\{ \because \:  log_{ {a}^{p} }( {a}^{q}) = \dfrac{q}{p} \}}}

 \boxed{\bf\implies \: log_{5}(625)  = 4}

So,

Given

\rm :\longmapsto\ \:  log_{2}( log_{2}( log_{5}(625) ) )

 \rm \:  =  \:  \:  \:  log_{2}( log_{2}( 4 ) )

 \rm \:  =  \:  \:  \:  log_{2}( log_{2}( 2 \times 2 ) )

 \rm \:  =  \:  \:  \:  log_{2}( log_{2}( {2}^{2} ) )

 \rm \:  =  \:  \:  log_{2}(2) \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bf{\blue{\{ \because \:  log_{ {a}^{p} }( {a}^{q}) = \dfrac{q}{p} \}}}

 \rm \:  =  \:  \: 1 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \bf{\blue{\{ \because \:  log_{ {a}}( {a}) =1\}}}

Hence,

\bf\implies \: \:  log_{2}( log_{2}( log_{5}(625) ) )  = 1

Additional Information :-

\rm :\longmapsto\:logx + logy = logxy

\rm :\longmapsto\:logx  -  logy = log \dfrac{x}{y}

\rm :\longmapsto\:log \:  {x}^{y}  = y \: logx

\rm :\longmapsto\: log_{x}(x)  = 1

\rm :\longmapsto\: log_{x}(y)  = \dfrac{logy}{logx}

\rm :\longmapsto\:log1 = 0

\rm :\longmapsto\: {e}^{ log(x)} =  x

\rm :\longmapsto\: {e}^{ ylog(x)} =   {x}^{y}

\rm :\longmapsto\: {x}^{ log_{x}(y) }  = y

\rm :\longmapsto\: {x}^{z log_{x}(y) }  =  {y}^{z}

Similar questions