Math, asked by sajalnimje2002, 9 months ago

evaluate the above limit​

Attachments:

Answers

Answered by ITzBrainlyGuy
1

Answer

Using L'Hopital's rule:

Since evaluating the limits of the numerator and denominator it would be in a intermediate form

\lim_{x→\pi}( \frac{ \frac{dx}{dy} ( \sqrt{1 -  \cos(x) } )}{ \frac{dx}{dy}( { \sin(x) }^{2} ) } )

Calculate the derivatives

\lim_{x→\pi}( \frac{ \sin(x) }{4 \sqrt{1 -  \cos(x)  }   \times  \cos(x) } )

\lim_{x→\pi }( \frac{ \frac{ \sin(x) }{2 \sqrt{1 -  \cos(x) } } }{ \sin(2x) } )

\lim_{x→\pi}( \frac{ \sin(x) }{2 \sqrt{1 -  \cos(x)  \times  \sin(2x) } } )

We know that sin(2x) = 2sin(x)cos(x)

\lim_{x→\pi}( \frac{ \sin(x) }{2 \sqrt{1 -  \cos(x) } \times 2 \sin(x) \cos(x)   } )

\lim_{x→\pi}( \frac{1}{4\sqrt{1 -  \cos(x) } \times  \cos(x)  } )

Evaluate the limit

 =  \frac{1}{4 \sqrt{1 -  \cos(\pi) } \times  \cos(\pi)  }

 =  -  \dfrac{  \sqrt{2} }{8}

Similar questions