Math, asked by PragyaTbia, 1 year ago

Evaluate the definite integrals: \int^1_0 {{(x\ e^x +sin\ \frac{\pi\ x}{4})} \, dx

Answers

Answered by MaheswariS
0

Answer:

Value of the given integral is

1+(\frac{-4}{\pi})[\sqrt{2}-1]

Step-by-step explanation:

Formula used:

Bernoulli's formula

\int{u}\:dv=uv-u'v_1

\int\limits^1_0(xe^x+sin\frac{\pi\:x}{4})\:dx\\\\=\int\limits^1_0{xe^x}\:dx+\int\limits^1_0{sin\frac{\pi\:x}{4}}\:dx\\\\=I_1+I_2

Take

u=x

u'=1

dv=e^x\:dx\\\\\int{dv}=\int{e^x\:dx}\\\\v=e^x\\\\v_1=e^x

By bernoulli's formula

\int{u}\:dv=uv-u'v_1

I_1=\int\limits^1_0{xe^x}\:dx\\\\I_1=[xe^x-1.e^x]^1_0\\\\I_1=[1.e-e]-[0-e^0]\\\\I_1=[e-e]-[0-1]\\\\I_1=1

I_2=\int\limits^1_0{sin\frac{\pi\:x}{4}}\:dx\\\\I_2=\frac{1}{\frac{\pi}{4}}[-cos\frac{\pi\:x}{4}]^1_0\\\\I_2=\frac{-4}{\pi}[cos\frac{\pi\:x}{4}]^1_0\\\\I_2=\frac{-4}{\pi}[cos\frac{\pi}{4}-cos0]\\\\I_2=\frac{-4}{\pi}[\sqrt{2}-1]

Therefore,

\int\limits^1_0(xe^x+sin\frac{\p\:ix}{4})\:dx\\\\=I_1+I_2\\\\=1+(\frac{-4}{\pi})[\sqrt{2}-1]

Similar questions