Math, asked by Anonymous, 1 month ago

Evaluate the derivative of f(x) = sin2x using Leibnitz product rule.


Giving away the points..u can take..but

❌Don't spam❌​

Answers

Answered by lokeshpasupula47
1

Answer:

Leibntiz theorem applied when two function in Product form.

• If two function are 'u' & 'v' then nth Derivative of (u.v) –

• According to the question –

\implies f(x) = \sin(2x) \\

• We know that –

sin(2x) = 2 \sin(x) \cos(x) \\

• So –

\\ \bf \implies f(x) = 2 \sin(x) \cos(x) \\

Answered by WiIdBoy
82

TO FIND :–

• Derivative of the function f(x) = sin(2x) by using Leibntiz product rule.

SOLUTION :–

• Leibntiz theorem applied when two function in Product form.

• If two function are 'u' & 'v' then nth Derivative of (u.v) –

  \\  \bf \implies \dfrac{d^{n}(u.v)}{dx} =  \: ^{n}c_{0} \dfrac{d^{n}(u)}{dx} (v) + \: ^{n}c_{1} \dfrac{d^{n - 1}(u)}{dx}  \left(\dfrac{d(v)}{dx} \right) + ....+ \: ^{n}c_{n}(u) \dfrac{d^{n}(v)}{dx} \\

• According to the question –

 \\ \bf  \implies f(x) =  \sin(2x) \\

• We know that –

 \\ \bf  \implies \sin(2x) = 2 \sin(x) \cos(x)   \\

• So –

 \\ \bf  \implies f(x) = 2 \sin(x) \cos(x)   \\

• Let's find first derivative –

 \\ \bf  \implies \dfrac{d \{f(x) \}}{dx} = 2  \dfrac{d\{  \sin(x). \cos(x) \}}{dx} \\

 \\ \bf  \implies \dfrac{d \{f(x) \}}{dx} = 2  \left \{^{1}c_{0} \dfrac{d \sin(x) }{dx}( \cos x) +  \:^{1}c_{1}( \sin x) \dfrac{d \cos(x) }{dx} \right \} \\

 \\ \bf  \implies f'(x)= 2  \left \{ \dfrac{d \sin(x) }{dx}( \cos x) +  \:( \sin x) \dfrac{d \cos(x) }{dx} \right \} \\

 \\ \bf  \implies f'(x)= 2  \left \{  \cos(x). \cos (x) + \sin(x) \{  -  \sin(x) \} \right\} \\

 \\ \bf  \implies f'(x)= 2  \left \{  \cos^{2} (x) -  \sin^{2} (x)\right\} \\

 \\ \bf  \implies f'(x)= 2  \left \{ \cos(2x) \right\} \:  \:  \:  \:  \:  \:  \: \left[\: \because \:  \cos^{2} (x) -  \sin^{2} (x)

Similar questions