Math, asked by Siyakashyap7873, 1 year ago

Evaluate the determinant 1 w w2 , w w2 1, w2 1 w. where w is a cube root of unity.

Answers

Answered by MaheswariS
23

Answer:

\bf\:\left|\begin{array}{ccc}1&\omega&{\omega}^2\\\omega&{\omega}^2&1\\{\omega}^2&1&\omega\end{array}\right|=0

Step-by-step explanation:

Given:

\omega is a cube root of unity

Then,

\bf\:{\omega}^3=1 and

\bf\:1+\omega+{\omega}^2=0

Now

\left|\begin{array}{ccc}1&\omega&{\omega}^2\\\omega&{\omega}^2&1\\{\omega}^2&1&\omega\end{array}\right|

=\left|\begin{array}{ccc}1+\omega+{\omega}^2&\omega&{\omega}^2\\1+\omega+{\omega}^2&{\omega}^2&1\\1+\omega+{\omega}^2&1&\omega\end{array}\right| C_1\implies\,C_1+C_2+C_3

=\left|\begin{array}{ccc}0&\omega&{\omega}^2\\0&{\omega}^2&1\\0&1&\omega\end{array}\right|

=0

Answered by SulagnaRoutray
5

Answer:

Heya mate,

Refer to the attachment for your answer

Attachments:
Similar questions