Math, asked by Srianeesh, 1 month ago

Evaluate the equation

Attachments:

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have,

 \rm \int2x  \:cos^{2} (x) dx \\

 \rm =  \int x  .2cos^{2} (x) dx \\

 \rm =  \int x   \{1 + cos(2x) \} dx \\

 \rm =  \int x  \: dx + \int \: x \:  cos(2x)  dx \\

 \rm =   \frac{ {x}^{2} }{2}  + c _{1}    + x\int   cos(2x)  dx -  \int  \bigg \{\frac{d}{dx}(x). \int \cos(2x) dx \bigg \} dx \\

 \rm =   \frac{ {x}^{2} }{2}  + c _{1}    + x. \frac{1}{2} . sin(2x) + c _{2}     -  \int  \bigg \{1. \frac{1}{2} .sin(2x)\bigg \} dx \\

Let \rm\:c _{1}  +c _{2}  =k

So,

 \rm =   \frac{ {x}^{2} }{2}    +  \frac{x}{2}  sin(2x) +k    -  \frac{1}{2}  \int sin(2x) dx \\

 \rm =   \frac{ {x}^{2} }{2}    +  \frac{x}{2}  sin(2x) +k    -  \frac{1}{2}. \frac{1}{2} . \{ -   cos(2x)  \} + c \\

Let \rm\:c +k=C

 \rm =   \frac{ {x}^{2} }{2}    +  \frac{x}{2}  sin(2x)      +  \frac{1}{4}   cos(2x)  + C \\

Similar questions