evaluate the follow: i²⁰⁰¹+i²⁰⁰²+.........+i²⁰²¹
Answers
Answered by
0
Step-by-step explanation:
combing a5ap4oa639a636orara6pyapprayaepyarypap6rarypap6rryapp6a3p6a4and and
Answered by
2
Answer:
=−1
{i}^{4} = {i}^{2} \times {i}^{2} = 1i
4
=i
2
×i
2
=1
{i}^{364} = {( {i}^{4} )}^{91} = {1}^{91} = 1i
364
=(i
4
)
91
=1
91
=1
Also,
{i}^{368} = {i}^{364} \times {i}^{4} = 1 \times 1 = 1i
368
=i
364
×i
4
=1×1=1
Similarly
{i}^{370} = {i}^{368} \times {i}^{2} = 1 \times - 1 = - 1i
370
=i
368
×i
2
=1×−1=−1
{i}^{372} = {i}^{368} \times {i}^{4} = 1 \times 1 = 1i
372
=i
368
×i
4
=1×1=1
{i}^{374} = - 1i
374
=−1
{i}^{378} = - 1i
378
=−1
{i}^{380} = 1i
380
=1
{i}^{382} = - 1i
382
=−1
Similar questions
Social Sciences,
4 months ago
English,
4 months ago
Math,
4 months ago
Chemistry,
8 months ago
Business Studies,
1 year ago
Sociology,
1 year ago
Science,
1 year ago