Math, asked by binodkumarverma591, 1 year ago

evaluate the following ​

Attachments:

Answers

Answered by Anonymous
10

\bold{ANSWER}

\rm{-4}

\mathbb{EXPLANATION}

\textit{Given\:Limit\:Is}

\displaystyle\lim_{x\to\:2}\frac{x^3-2x^2}{x^2-5x+6}

\rm{Put\:x=2\:in\:given\:limit\:we\:get\:\frac{0}{0}\:form}

\rm{in\:order\:to\:get\:rid\:from\:this\:form\:we\:use\:L'HOSPITALS\:RULE}

\underline{L'HOSPITALS\:\:RULE}

\rm{it\:states\:that\:Differentiate\:Denominator\:And\:Numenator\:seperetly}

\rm{till\:we\:come\:out\:from\:\frac{0}{0}\:form}

\displaystyle\lim_{x\to\:2}\frac{3x^2-4x}{2x-5}

\rm{Now\:put\:x=2\:we\:have}

\implies\:\frac{3\times\:2^2-4\times\:2}{2\times\:2-5}

\implies\:\frac{3\times\:4-4}{4-5}

\implies\:\frac{4}{-1}

\implies\:\rm{-4}

\therefore \displaystyle\lim_{x\to\:2}\frac{x^3-2x^2}{x^2-5x+6}=\rm{-4}

Similar questions