Math, asked by patlebharat, 20 days ago

evaluate the following definite integrals​

Attachments:

Answers

Answered by mathdude500
4

Question :-

Evaluate the following integral

\rm \: \displaystyle\int_{0}^{ \dfrac{\pi}{2} } \: log(cosx) \: dx \\

\large\underline{\sf{Solution-}}

Given integral is

\rm \: \displaystyle\int_{0}^{ \dfrac{\pi}{2} } \: log(cosx) \: dx \\

Let assume that

\rm \: I = \displaystyle\int_{0}^{ \dfrac{\pi}{2} } \: log(cosx) \: dx  -  -  - (1)\\

We know,

\boxed{ \rm{ \:\displaystyle\int_{0}^{a}f(x)dx \:  =  \: \displaystyle\int_{0}^{a}f(a - x)dx \:  \: }} \\

So, using this property, we have

\rm \: I = \displaystyle\int_{0}^{ \dfrac{\pi}{2} } \: logcos\bigg(\dfrac{\pi}{2} - x\bigg) \: dx  \\

\rm \: I = \displaystyle\int_{0}^{ \dfrac{\pi}{2} } \: log(sinx) \: dx  -  -  - (2)\\

On adding equation (1) and (2), we get

\rm \:2 I = \displaystyle\int_{0}^{ \dfrac{\pi}{2} } \:[ log(cosx) + log(sinx) ]\: dx\\

\rm \: 2I = \displaystyle\int_{0}^{ \dfrac{\pi}{2} } \:log(sinx \: cosx) \: dx\\

\rm \: 2I = \displaystyle\int_{0}^{ \dfrac{\pi}{2} } \:log\bigg(\dfrac{2 \: sinx \: cosx}{2} \bigg)  \: dx\\

\rm \:2 I = \displaystyle\int_{0}^{ \dfrac{\pi}{2} } \:log\bigg(\dfrac{sin2x}{2} \bigg)  \: dx\\

\rm \:2I = \displaystyle\int_{0}^{ \dfrac{\pi}{2} } \: [log(sin2x) - log2] \: dx \\

\rm \:2I = \displaystyle\int_{0}^{ \dfrac{\pi}{2} } \:log(sin2x) \: dx - log2\displaystyle\int_{0}^{\dfrac{\pi}{2}} dx\\

\rm \:2I = I_1 - log2\bigg[x\bigg]_{0}^{\dfrac{\pi}{2}} \\

where,

\rm \: I_1 = \displaystyle\int_{0}^{ \dfrac{\pi}{2} } \: log(sin2x) \: dx -  -  - (3) \\

\rm \:2 I = I_1 - log2\bigg(\dfrac{\pi}{2} - 0 \bigg)  \\

\rm\implies \:2I = I_1 - \dfrac{\pi}{2}log2 -  -  - (4) \\

Now, Consider

\rm \: I_1 = \displaystyle\int_{0}^{ \dfrac{\pi}{2} } \: log(sin2x) \: dx  \\

can be rewritten as

\rm \: I_1 = \displaystyle\int_{0}^{ \dfrac{\pi}{2} } \: logsin2\bigg(\dfrac{\pi}{2} - x\bigg) \: dx  \\

\rm \: I_1 = \displaystyle\int_{0}^{ \dfrac{\pi}{2} } \: logsin\bigg(\pi -2 x\bigg) \: dx  \\

\rm \: I_1 = \displaystyle\int_{0}^{ \dfrac{\pi}{2} } \: log(sin2x) \: dx  \\

So, above can be rewritten as

\rm \: I_1 = 2\displaystyle\int_{0}^{ \dfrac{\pi}{4} } \: log(sin2x) \: dx  \\

To evaluate this integral, we use method of Substitution.

So, Substitute

\rm \: 2x = y \\

\rm \: 2dx = dy \\

Now, in definite integrals, when we substitute, we have to change the limits too.

So,

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 0 & \sf 0 \\ \\ \sf \dfrac{\pi}{4} & \sf \dfrac{\pi}{2} \end{array}} \\ \end{gathered}

So, above integral can be rewritten as

\rm \: I_1 = \displaystyle\int_{0}^{ \dfrac{\pi}{2} } \: log(siny) \: dy  \\

Now, using equation (2), we get

\rm\implies \:I_1 = I -  -  - (5) \\

On substituting the value in equation (4), we get

\rm\implies \:2I = I - \dfrac{\pi}{2}log2  \\

\rm\implies \:I = - \dfrac{\pi}{2}log2  \\

Hence,

\rm\implies \:\boxed{ \rm{ \:\rm \: \displaystyle\int_{0}^{ \dfrac{\pi}{2} } \: log(cosx) \: dx  \:  =  \:  -  \: \dfrac{\pi}{2} \: log2 \:  \: }}\\

\rule{190pt}{2pt}

Properties Used :-

\boxed{ \rm{ \:\displaystyle\int_{0}^{a}f(x)dx \:  =  \: \displaystyle\int_{0}^{a}f(a - x)dx \:  \: }} \\

\boxed{ \rm{ \:\displaystyle\int_{a}^{b}f(x)dx \:  =  \: \displaystyle\int_{a}^{b}f(y)dy \:  \: }} \\

\boxed{ \rm{ \:\displaystyle\int_{0}^{2a}f(x)dx \:  =  \: 2\displaystyle\int_{0}^{a}f(x)dx \:  \:  \: if \: f(2a - x) = f(x) \: }} \\

\rule{190pt}{2pt}

Additional Information :-

\boxed{ \rm{ \:\displaystyle\int_{a}^{b}f(x)dx \:  =  \: \displaystyle\int_{a}^{b}f(a + b - x)dx \:  \: }} \\

\boxed{ \rm{ \:\displaystyle\int_{0}^{2a}f(x)dx \:  =  0 \:  \:  \: if \: f(2a - x) =  - f(x) \: }} \\

\boxed{ \rm{ \:\displaystyle\int_{ - a}^{a}f(x)dx \:  =  0 \:  \:  \: if \: f( - x) =  - f(x) \: }} \\

\boxed{ \rm{ \:\displaystyle\int_{ - a}^{a}f(x)dx \:  =  \: 2\displaystyle\int_{0}^{a}f(x)dx \:  \:  \: if \: f(- x) = f(x) \: }} \\

Similar questions