Evaluate The Following Definite Integrals As Limit Of Sums:-Answer...
Answers
Here,
Lower limit, a = 0
Upper limit, b = 2
Step:- 1
where h is the width of interval and n is number of intervals of width h
Step :- 2
Put x = a + rh = 0 + rh = rh
So, above expression can be rewritten as
Step :- 3
By definition of Limit as a Sum,
So, on substituting the values, we get
Now, first term forms a GP series, so using sum of n terms, we get
Hence,
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
Formulae Used
1. Sum of n terms of GP series having first term a and common ratio r respectively is given by
2. Sum of first n natural numbers is given by
3. Limit result
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
ADDITIONAL INFORMATION
Answer:
Here,
Lower limit, a = 0
Upper limit, b = 2
\rm \: f(x) = {e}^{x} - xf(x)=e
x
−x
Step:- 1
\begin{gathered}\rm \: nh = b - a = 2 - 0 = 2 - - - - (1) \\ \end{gathered}
nh=b−a=2−0=2−−−−(1)
where h is the width of interval and n is number of intervals of width h
Step :- 2
\rm \: f(x) = {e}^{x} - xf(x)=e
x
−x
Put x = a + rh = 0 + rh = rh
So, above expression can be rewritten as
\begin{gathered}\rm \: f(rh) = {e}^{rh} - rh \\ \end{gathered}
f(rh)=e
rh
−rh
Step :- 3
By definition of Limit as a Sum,
\begin{gathered}\rm \: \displaystyle\int_a^b \: f(x) \: dx \: = \lim _{h \to \: 0}\bigg(h \sum_{r = 0}^{n - 1} f(a + rh)\bigg) \\ \end{gathered}
∫
a
b
f(x)dx=
h→0
lim
(h
r=0
∑
n−1
f(a+rh))
So, on substituting the values, we get
\begin{gathered}\rm \: \displaystyle\int_0^2 ({e}^{x} - x) \: dx \: = \lim _{h \to \: 0}\bigg(h \sum_{r = 0}^{n - 1} ({e}^{rh} - rh\bigg) \\ \end{gathered}
∫
0
2
(e
x
−x)dx=
h→0
lim
(h
r=0
∑
n−1
(e
rh
−rh)
\begin{gathered}\rm \: = \lim _{h \to \: 0}h \sum_{r = 0}^{n - 1}{e}^{rh} - \lim _{h \to \: 0}h \sum_{r = 0}^{n - 1} rh \\ \end{gathered}
=
h→0
lim
h
r=0
∑
n−1
e
rh
−
h→0
lim
h
r=0
∑
n−1
rh
\begin{gathered}\rm \: = \lim _{h \to \: 0}h (1 + {e}^{h} + {e}^{2h} + - - + {e}^{(n - 1)h} ) - \lim _{h \to \: 0} {h}^{2} \sum_{r = 0}^{n - 1} r \\ \end{gathered}
=
h→0
lim
h(1+e
h
+e
2h
+−−+e
(n−1)h
)−
h→0
lim
h
2
r=0
∑
n−1
r
Now, first term forms a GP series, so using sum of n terms, we get
\begin{gathered}\rm \: = \lim _{h \to \: 0}h \: \frac{1({e}^{hn} - 1)}{{e}^{h} - 1} - \lim _{h \to \: 0} {h}^{2} \dfrac{n(n - 1)}{2} \\ \end{gathered}
=
h→0
lim
h
e
h
−1
1(e
hn
−1)
−
h→0
lim
h
2
2
n(n−1)
\begin{gathered}\rm \: = \: \frac{{e}^{2} - 1}{1} - \lim _{h \to \: 0} \dfrac{nh(nh - h)}{2} \\ \end{gathered}
=
1
e
2
−1
−
h→0
lim
2
nh(nh−h)
\begin{gathered}\rm \: = {e}^{2} - 1 - \dfrac{2(2 - 0)}{2} \\ \end{gathered}
=e
2
−1−
2
2(2−0)
\begin{gathered}\rm \: = {e}^{2} - 1 - 2 \\ \end{gathered}
=e
2
−1−2
\begin{gathered}\rm \: = {e}^{2} - 3 \\ \end{gathered}
=e
2
−3
Hence,
\begin{gathered}\rm\implies \:\boxed{\tt{ \rm \: \displaystyle\int_0^2\rm ( {e}^{x} - x) \: dx = {e}^{2} - 3}}\\ \end{gathered}
⟹
∫
0
2
(e
x
−x)dx=e
2
−3
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
Formulae Used
1. Sum of n terms of GP series having first term a and common ratio r respectively is given by
\begin{gathered}\boxed{\tt{ S_n \: = \: \frac{a( {r}^{n} - 1)}{r - 1} \: \: provided \: that \: r \: \ne \: 1 \: }} \\ \end{gathered}
S
n
=
r−1
a(r
n
−1)
providedthatr
=1
2. Sum of first n natural numbers is given by
\begin{gathered}\boxed{\tt{ \sum_{r = 0}^{n - 1}r \: = \: \frac{n(n - 1)}{2} \: }} \\ \end{gathered}
r=0
∑
n−1
r=
2
n(n−1)
3. Limit result
\begin{gathered}\boxed{\tt{ \: \lim _{x \to \: 0} \: \frac{{e}^{x} - 1}{x} = 1 \: }} \\ \end{gathered}
x→0
lim
x
e
x
−1
=1
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
ADDITIONAL INFORMATION
\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}\end{gathered}
f(x)
k
sinx
cosx
sec
2
x
cosec
2
x
secxtanx
cosecxcotx
tanx
x
1
e
x
∫f(x)dx
kx+c
−cosx+c
sinx+c
tanx+c
−cotx+c
secx+c
−cosecx+c
logsecx+c
logx+c
e
x
+c