Math, asked by siddhantgade762, 1 month ago

Evaluate the following Definite Integration ​

Attachments:

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have,

 \int \limits^{1}_{0} \sqrt{ \frac{1 - x}{1 + x} } dx \\

Let \: x =  \cos(2 \alpha )  \\  \implies \: dx =  - 2 \sin(2 \alpha ) d \alpha

    = -2 \int \limits^{ \frac{\pi}{6} }_{ \frac{\pi}{4} } \sqrt{ \frac{1 -  \cos( 2\alpha ) }{1 +  \cos(2 \alpha ) } }  \sin(2 \alpha ) d \alpha  \\

    = 2 \int \limits^{ \frac{\pi}{4} }_{ \frac{\pi}{6} } \sqrt{ \frac{2 \sin^{2} ( \alpha )  }{ 2 \cos ^{2} ( \alpha ) } }  \sin(2 \alpha ) d \alpha  \\

    = 2 \int \limits^{ \frac{\pi}{4} }_{ \frac{\pi}{6} }  \tan( \alpha )  \sin(2 \alpha ) d \alpha  \\

    = 2 \int \limits^{ \frac{\pi}{4} }_{ \frac{\pi}{6} }   \frac{ \sin( \alpha ) }{ \cos( \alpha ) }  .2 \sin(\alpha ) \cos( \alpha )  d \alpha  \\

    = 4\int \limits^{ \frac{\pi}{4} }_{ \frac{\pi}{6} }    \sin^{2} (\alpha )   d \alpha  \\

    = 4\int \limits^{ \frac{\pi}{4} }_{ \frac{\pi}{6} }     \frac{1 -  \cos(2 \alpha ) }{2}  d \alpha  \\

    =2 \int \limits^{ \frac{\pi}{4} }_{ \frac{\pi}{6} }     (1 -  \cos(2 \alpha ) )  d \alpha  \\

    =2 \int \limits^{ \frac{\pi}{4} }_{ \frac{\pi}{6} }   d \alpha  - 2\int \limits^{ \frac{\pi}{4} }_{ \frac{\pi}{6} }  \cos( 2\alpha )  d \alpha \\

 = 2 [ \frac{\pi}{4} -  \frac{\pi}{6}  ] -   [ \sin( \frac{\pi}{2} ) -  \sin( \frac{\pi}{3} )  ] \\

 =  \frac{\pi}{6}  - (1 -  \frac{ \sqrt{3} }{2} )

 =  \frac{ \sqrt{3} }{2}  +  \frac{\pi}{6}  - 1

Similar questions