Math, asked by jangirjitendra, 10 months ago

Evaluate the following expression
a) (3/2) power 3 × (2/3) power 2​

Answers

Answered by Anonymous
6

Answer:

(3/2) power 3 × (2/3) power 2

3×3/2×2×2 × 2×2/3×3

9/8 × 4/9

4/8

1/2

Answered by spacelover123
1

\frac{3}{2}^{2} *\frac{2}{3} ^{2}

Method 1

Since the exponents are the same we will apply the following law ⇒

a^{m} *b^{m} =ab^{m}

So, now we solve it like this,

\frac{3}{2}^{2} *\frac{2}{3} ^{2}=(\frac{3}{2}*\frac{2}{3})^{2}

\frac{3}{2}^{2} *\frac{2}{3} ^{2}=(\frac{3/3}{2/2}*\frac{2/2}{3/3})^{2}

\frac{3}{2}^{2} *\frac{2}{3} ^{2}=(\frac{1}{1}*\frac{1}{1})^{2}

\frac{3}{2}^{2} *\frac{2}{3} ^{2}= (1)^{2}

\frac{3}{2}^{2} *\frac{2}{3} ^{2} = (1*1)

\frac{3}{2}^{2} *\frac{2}{3} ^{2}=1

Method 2

We substitute the exponents and give the base a whole value and then solve.

So, now we solve it like this,

\frac{3}{2}^{2} *\frac{2}{3} ^{2}=\frac{3*3}{2*2} *\frac{2*2}{3*3}

\frac{3}{2}^{2} *\frac{2}{3} ^{2}=\frac{9}{4}*\frac{4}{9}

\frac{3}{2}^{2} *\frac{2}{3} ^{2}=\frac{9/9}{4/4}*\frac{4/4}{9/9}

\frac{3}{2}^{2} *\frac{2}{3} ^{2}=\frac{1}{1}*\frac{1}{1}

\frac{3}{2}^{2} *\frac{2}{3} ^{2}=\frac{1}{1}

\frac{3}{2}^{2} *\frac{2}{3} ^{2}=1

\frac{3}{2}^{2} *\frac{2}{3} ^{2}=1

Similar questions