Evaluate the following :
(i)2
(ii)cos 48° − sin 42°
(iii)
(iv)
Answers
SOLUTION :
Given : (sin 49° / cos 41°)² + (cos 41°/sin 49°)²
= (sin(90°− 41°)/cos 41°)² +(cos(90° −49°)/sin49°)²
[sin(90∘ – θ) = cos θ and cos(90° – θ) = sin θ]
= (cos 41° / cos 41°)² + (sin 49° /sin49°)²
= 1² +1² = 1 + 1 = 2
(sin 49° / cos 41°)² + (cos 41°/sin 49°)² = 2
Hence, the value of (sin 49° / cos 41°)² + (cos 41°/sin 49°)² is 2.
(ii) SOLUTION :
Given : cos 48° – sin 42°
cos 48° – sin 42° = cos(90°− 42°)− sin 42°
[cos(90° − θ) = sinθ]
= sin 42° – sin 42° = 0
cos 48° – sin 42° = 0
Hence,the value of cos 48° – sin 42° is 0.
(iii) SOLUTION :
Given : cot 40°/tan 50°−1/2(cos 35°/sin 55°)
cot 40°/tan 50°−1/2(cos 35°/sin 55°) = cot(90° −50°) tan 50° −1/2(cos(90°−55°)/sin 55°)
= tan 50°/ tan 50° −1/2(sin 55°/sin 55°)
[cot(90° − θ ) = tan θ and cos(90° −θ)= sin θ]
= 1−1/2
= (2 - 1)/2
= 1/2
cot 40°/tan 50°−1/2(cos 35°/sin 55°) = 1/2
Hence, the value of cot 40°/tan 50°−1/2(cos 35°/sin 55°) is 1/2.
(iv) SOLUTION :
Given : (sin 27°/cos 63°)² – (cos 63°/sin 27°)²
[sin(90∘ – θ) = cos θ and cos(90° – θ) = sin θ]
(sin 27°/cos 63°)² – (cos 63°/sin 27°)² = (sin(90° −63° )/cos63°)² – (cos(90° −27°)/sin 27∘)²
=(cos63°/cos63°)² – (sin27°/sin27°)²
= 1 - 1 = 0
(sin 27°/cos 63°)² – (cos 63°/sin 27°)² = 0
Hence, the value of (sin 27°/cos 63°)² – (cos 63°/sin 27°)² is 0.
HOPE THIS ANSWER WILL HELP YOU…..