Math, asked by Areeni, 9 months ago

Evaluate the following (ii) ​

Attachments:

Answers

Answered by anindyaadhikari13
1

Solution:

Given to evaluate:

\tt (3^{-1}+4^{-1})^{-2}

Can be written as:

\tt=\bigg[\dfrac{1}{3}+\dfrac{1}{4}\bigg]^{-2}\:\:\bigg[\because x^{-1}=\dfrac{1}{x}, x\ne 0\:\bigg]

\tt=\bigg[\dfrac{4+3}{12}\bigg]^{-2}

\tt=\bigg(\dfrac{7}{12}\bigg)^{-2}

\tt=\bigg(\dfrac{12}{7}\bigg)^{2}

\tt=\dfrac{144}{49}

Which is our required answer.

Learn More:

Laws of exponents for real numbers.

If a, b are positive real numbers and m, n are rational numbers, then the following results hold.

 \tt1. \:  \:  {a}^{m}  \times  {a}^{n}  =  {a}^{m + n}

 \tt2. \:  \:  ({a}^{m})^{n}  =  {a}^{mn}

\tt3. \:  \:  \dfrac{ {a}^{m} }{ {a}^{n} }  =  {a}^{m - n}

 \tt4. \:  \:  {a}^{m} \times  {b}^{m} =  {(ab)}^{m}

 \tt5. \: \:   \bigg(\dfrac{a}{b} \bigg)^{m}  =  \dfrac{ {a}^{m} }{ {b}^{m} }

 \tt6. \:  \:  {a}^{ - n} =  \dfrac{1}{ {a}^{n} }

 \tt7. \:  \:  {a}^{n} =  {b}^{n} \rightarrow a = b, n \neq0

 \tt8. \:  \:  {a}^{m} =  {a}^{n} \rightarrow m = n, a \neq 1

Similar questions