Math, asked by kajal49670, 1 year ago

) Evaluate the following integral:
(1) for sin x dx (11) { x dx
[Ans: (1) 1, (ii) 12]
sk​

Answers

Answered by lublana
8

Answer:

1.-cos x+C

2.\frac{x^2}{2}

Step-by-step explanation:

We are given that two functions '

1.sinx 2. x

We have to evaluate  the integral.

We know that

\int sinx dx= -cosx +C

Where C=Integration constant

Therefore , \int sinxdx=-cos x+C

2.We know that

\int x^n dx=\frac{x^{n+1}}{n+1}+C

Using the formula

\int xdx=\frac{x^2}{2}+C

Answered by codiepienagoya
4

Given:

\bold{i) \int \sin x dx}\\\\\bold{ii) \int  x dx}\\\\

To find:

Evaluate the integral.

Solution:

Formula:

\int x^n dx= \frac{x^{n+1}}{n+1} + c\\\\\int sin \ x \  dx = -cos x +c

i)

\to \int \sin x dx\\\\\to \int \sin x dx = -\cos x+c\\\\

ii)

\to \int x \ dx=\int x^1 dx

              = \frac{x^{1+1}}{1+1}\\\\ = \frac{x^2}{2}+c\\

Similar questions