Math, asked by barodwalrohan, 9 months ago

Evaluate the following integral.

Attachments:

Answers

Answered by BrainlyPopularman
4

ANSWER :

GIVEN FUNCTION :

{ \bold{ = ∫ \frac{ \sin(x) +  \cos( x )  }{ \sqrt{ \sin(2x) } } dx}}

TO FIND :

VALUE OF INTEGRATED FUNCTION...

{ \bold{ \green{ \huge{solution} : -  }}}

{ \bold{ = ∫ \frac{ \sin(x)  +  \cos(x) }{ \sqrt{ \sin(2x) } }dx }} \\  \\  \\ { \bold{ = ∫ \frac{ \sin(x)  +  \cos(x) }{ \sqrt{ - ( -  \sin(2x) )} }dx }} \\  \\  \\ { \bold{ = ∫ \frac{ \sin(x)  +  \cos(x) }{ \sqrt{ - (1 -  \sin(2x) - 1) } } dx}} \\  \\  \\ { \bold{ = ∫ \frac{ \sin(x)  +  \cos(x) }{ \sqrt{ - ( {sin}^{2} x +  {cos}^{2} x - 2 \sin(x)   \cos(x)  - 1)}} dx}} \\  \\  \\ { \bold{ = ∫ \frac{ \sin(x) +  \cos(x)  }{ \sqrt{ - ( {( \sin(x) -  \cos(x)  )}^{2}  - 1)} }dx }} \\   \\ \\ { \bold{  \:  \: . \:  \: now \:  \: put \:  \:  \:  \sin(x) -  \cos(x)  = t  \:  \: then -  }} \\   \\ \\ { \bold{  \implies (\sin(x) +  \cos(x))  dx = dt}} \\  \\  \\ { \bold{ = ∫ \frac{dt}{ \sqrt{ - ( {t}^{2}  - 1)} } }} \\ \\   \\ { \bold{ = ∫ \frac{dt}{ \sqrt{1 -  {t}^{2} } } }} \\ \\   \\  { \bold{ =  { \sin }^{ - 1} (t) + c}} \\  \\  \\ { \bold{ \implies \boxed{ {ANSWER =  {sin}^{ - 1} ( \sin(x)  - cos(x)) + c}}}}

Similar questions