Math, asked by khushirana1723, 7 months ago

Evaluate the following integral as the limit of a sum:-​

Attachments:

Answers

Answered by BrainlyPopularman
11

GIVEN :

 \\  \bf \to \int_{2}^{5} {e}^{3x}.dx \\

TO FIND :

• Value of integration = ?

SOLUTION :

• Let the function –

 \\  \bf \implies I = \int_{2}^{5} {e}^{3x}.dx \\

• Let 3x = t

• Differentiate with respect to 't' –

 \\  \bf \implies3 \dfrac{dx}{dt} = 1 \\

 \\  \bf \implies3dx = dt \\

 \\  \bf \implies dx = \dfrac{dt}{3} \\

• So that –

 \\  \bf \implies I = \dfrac{1}{3}  \int_{2}^{5} {e}^{t}.dt \\

• We know that –

 \\  \bf \implies  \int{e}^{x}.dx =  {e}^{x} + c  \\

 \\  \bf \implies I = \dfrac{1}{3} \bigg[{e}^{t} \bigg]_{2}^{5} \\

• Now replace 't' –

 \\  \bf \implies I = \dfrac{1}{3} \bigg[{e}^{3x} \bigg]_{2}^{5} \\

 \\  \bf \implies I = \dfrac{1}{3}[{e}^{3(5)} -  {e}^{3(2)} ]\\

 \\  \bf \implies I = \dfrac{1}{3}({e}^{15} -  {e}^{6})\\

 \\\large \implies{ \boxed{ \bf I = \dfrac{ {e}^{6}}{3}({e}^{9} -1)}}\\

Similar questions