Math, asked by papafairy143, 6 hours ago

Evaluate the following integral

 \int_0^1 \: x {(1 - x)}^{n} dx

Answers

Answered by mathdude500
10

\large\underline{\sf{Solution-}}

Given integral is

\rm :\longmapsto\:\displaystyle\int_0^1\rm x {(1 - x)}^{n} dx

Let assume that

\rm :\longmapsto\:I \:  =  \: \displaystyle\int_0^1\rm x {(1 - x)}^{n} dx

We know,

\boxed{\tt{ \displaystyle\int_0^a\rm f(x)dx \:  =  \: \displaystyle\int_0^a\rm f(a - x)dx}}

So, using this identity, we get

\rm :\longmapsto\:I \:  =  \: \displaystyle\int_0^1\rm (1 - x) {([1 - (1 - x)]}^{n} dx

\rm :\longmapsto\:I \:  =  \: \displaystyle\int_0^1\rm (1 - x) {([1 - 1  +  x]}^{n} dx

\rm :\longmapsto\:I \:  =  \: \displaystyle\int_0^1\rm (1 - x) {x}^{n} dx

\rm :\longmapsto\:I \:  =  \: \displaystyle\int_0^1\rm ({x}^{n} -  {x}^{n + 1} )dx

\rm :\longmapsto\:I \:  =  \: \bigg[\dfrac{ {x}^{n + 1} }{n + 1}  - \dfrac{ {x}^{n + 2} }{n + 2} \bigg]_0^1\rm

\rm :\longmapsto\:I \:  =  \: \dfrac{ 1}{n + 1}  - \dfrac{1}{n + 2}

\rm :\longmapsto\:I \:  =  \: \dfrac{n + 2 - n - 1}{(n + 1)(n + 2)}

\bf :\longmapsto\:I \:  =  \: \dfrac{1}{(n + 1)(n + 2)}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

MORE TO KNOW

\boxed{\tt{ \displaystyle\int_b^a\rm f(x)dx \:  =  \: \displaystyle\int_b^a\rm f(y)dx}}

\boxed{\tt{ \displaystyle\int_b^a\rm f(x)dx \:  =  \:  -  \: \displaystyle\int_a^b\rm f(x)dx}}

\boxed{\tt{ \displaystyle\int_b^a\rm f(x)dx \:  =  \: \displaystyle\int_b^a\rm f(a + b - x)dx}}

\boxed{\tt{ \displaystyle\int_{ - a}^a\rm f(x)dx \:  =  \:2 \displaystyle\int_0^a\rm f(x)dx \:  \: if \: f( - x) = f(x)}}

\boxed{\tt{ \displaystyle\int_{ - a}^a\rm f(x)dx \:  =  \: 0 \:  \: if \: f( - x) =  - f(x)}}

\boxed{\tt{ \displaystyle\int_{0}^{2a}\rm f(x)dx \:  =  \: 0 \:  \: if \: f(2a -  x) =  - f(x)}}

\boxed{\tt{ \displaystyle\int_{0}^{2a}\rm f(x)dx \:  =  \:2 \displaystyle\int_0^a\rm f(x) \:  \: if \: f(2a -  x) = f(x)}}

Similar questions