Math, asked by madhav5245, 1 day ago

Evaluate the following integral

 \int \:  \frac{dx}{1 + cotx}  \\

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given integral is

\rm \:  \displaystyle \int \rm \:  \frac{dx}{1 + cotx}  \\

can be rewritten as

\rm \: =  \:   \displaystyle \int \rm \:  \frac{dx}{1 + \dfrac{cosx}{sinx} }  \\

\rm \: =  \:   \displaystyle \int \rm \:  \frac{dx}{\dfrac{sinx + cosx}{sinx} }  \\

\rm \:  =  \: \displaystyle \int \rm \: \frac{sinx}{sinx + cosx} \: dx \\

\rm \:  =  \:  \frac{1}{2} \displaystyle \int \rm \: \frac{2sinx}{sinx + cosx} \: dx \\

\rm \:  =  \:  \frac{1}{2} \displaystyle \int \rm \: \frac{sinx + sinx}{sinx + cosx} \: dx \\

\rm \:  =  \:  \frac{1}{2} \displaystyle \int \rm \: \frac{sinx + sinx + cosx - cosx}{sinx + cosx} \: dx \\

\rm \:  =  \:  \frac{1}{2} \displaystyle \int \rm \: \frac{(sinx  + cosx) + (sinx - cosx)}{sinx + cosx} \: dx \\

\rm \:  =  \:  \frac{1}{2} \displaystyle \int \rm \: \frac{sinx  + cosx}{sinx + cosx} \: dx  + \frac{1}{2} \displaystyle \int \rm \: \frac{sinx - cosx}{sinx + cosx} \: dx \\

\rm \:  =  \:  \frac{1}{2} \displaystyle \int \rm \: 1 \: dx - \frac{1}{2} \displaystyle \int \rm \: \frac{cosx - sinx}{sinx + cosx} \: dx \\

In second integral, we use method of Substitution.

So, Substitute

\rm \: sinx + cosx = y \\

\rm \: (cosx - sinx)dx = dy \\

So, on substituting the values, we get

\rm \:  =  \: \frac{1}{2} \displaystyle \int \rm \:dx \:   -   \:  \frac{1}{2}\displaystyle \int \rm \: \frac{dy}{y}  \\

\rm \:  =  \: \dfrac{1}{2}x  -  \dfrac{1}{2} log |y|  + c \\

\rm \:  =  \: \dfrac{x}{2}  - \dfrac{1}{2} log |sinx + cosx|  + c \\

Hence,

\boxed{ \rm{ \:\rm \:\displaystyle \int \rm \: \frac{dx}{1 + cotx}   =  \: \dfrac{x}{2}  - \dfrac{1}{2} log |sinx + cosx|  + c \:  \: }} \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Answered by talpadadilip417
12

   \small\colorbox{lightyellow} {\text{ \bf♕ Brainliest answer }}

Question :-

Evaluate the following integral  \displaystyle \rm\int \: \frac{dx}{1 + \cot x}

 \rule{300pt}{0.1pt}

\mathbb\red{ \tiny A \scriptsize \: N \small \:S \large \: W \Large \:E \huge \: R}

 \rule{300pt}{0.1pt}

\[ \begin{array}{l} \\  \displaystyle\rm  I=\int \frac{d x}{1+\cot x}=\int \frac{\sin x}{\sin x+\cos x} d x \\ \\  \displaystyle\begin{aligned} \displaystyle\rm\sin x   \displaystyle\rm=M \frac{d}{d x}(\sin x+\cos x)+N(\sin x+\cos x) \\ &\\  \displaystyle\rm=M(-\sin x+\cos x)+N(\sin x+\cos x) \end{aligned} \end{array} \]

Comparing the coefficients of sin x and cos x , we have

 \rm\[ -M+N=1, M+N=0 \]

Solving these equations, we have

 \\ \rm M=-\frac{1}{2}, N=\frac{1}{2}

 \[ \begin{array}{l}   \displaystyle\rm\sin x=-\frac{1}{2}(-\sin x+\cos x)+\frac{1}{2}(\sin x+\cos x) \\ \\  \displaystyle\rm I=\int \frac{\sin x}{\sin x+\cos x} d x \\ \\  \displaystyle\rm \quad=-\frac{1}{2} \int \frac{(-\sin x+\cos x)}{(\sin x+\cos x)} d x+\frac{1}{2} \int \frac{(\sin x+\cos x)}{(\sin x+\cos x)} d x \\ \\  \displaystyle\rm \quad=-\frac{1}{2} \ln |(\sin x+\cos x)|+\frac{1}{2} x+c \end{array} \]

Similar questions