Math, asked by aryan021212, 2 days ago

Evaluate the following integral

 \int \frac{ {x}^{2} + 1 }{ {(x + 1)}^{2} }  {e}^{x} dx \\

Answers

Answered by mathdude500
13

\large\underline{\sf{Solution-}}

Given integral is

\rm \: \displaystyle\int\tt \frac{ {x}^{2} + 1 }{ {(x + 1)}^{2} } {e}^{x} dx \\

can be rewritten as

\rm \: =  \displaystyle\int\tt \frac{ {x}^{2} + 1  + 2x - 2x}{ {(x + 1)}^{2} } {e}^{x} dx \\

can be re-arranged as

\rm \: =  \displaystyle\int\tt \frac{( {x}^{2} + 1  + 2x) - 2x}{ {(x + 1)}^{2} } {e}^{x} dx \\

\rm \: =  \displaystyle\int\tt \frac{({x + 1)}^{2} - 2x}{ {(x + 1)}^{2} } {e}^{x} dx \\

\rm \: =  \displaystyle\int\tt \bigg(1 - \frac{2x}{ {(x + 1)}^{2} }\bigg) {e}^{x} dx \\

\rm \:  = \displaystyle\int\tt {e}^{x} \: dx \:  -  \: 2\displaystyle\int\tt  \frac{x}{ {(x + 1)}^{2} } {e}^{x} \: dx \\

\rm \:  = \tt {e}^{x} \:  -  \: 2\displaystyle\int\tt  \frac{x + 1 - 1}{ {(x + 1)}^{2} } {e}^{x} \: dx \\

\rm \:  = \tt {e}^{x} \:  -  \: 2\displaystyle\int\tt  \bigg(\frac{x + 1}{ {(x + 1)}^{2} } -  \frac{1}{ {(x + 1)}^{2} }\bigg) {e}^{x} \: dx \\

\rm \:  = \tt {e}^{x} \:  -  \: 2\displaystyle\int\tt  \bigg(\frac{1}{ {(x + 1)}} -  \frac{1}{ {(x + 1)}^{2} }\bigg) {e}^{x} \: dx \\

We know,

\boxed{ \rm{ \:\displaystyle\int\tt {e}^{x}[ \: f(x) + f'(x) \: ] \: dx \:  =  \: {e}^{x} \: f(x) + c \:  \: }} \\

So, here

\rm \: f(x) =  \dfrac{1}{x + 1}  \\

and

\rm \: f'(x) \:  =   \:  - \:  \dfrac{1}{(x + 1)^{2} }  \\

So, using above result, we get

 \tt \:  = {e}^{x} - 2 \times {e}^{x} \times  \dfrac{1}{x + 1}  + c \\

 \tt \:  = {e}^{x} -  \dfrac{2{e}^{x}}{x + 1}  + c \\

 \tt \:  = {e}^{x}\bigg(1 -  \dfrac{2}{x + 1}\bigg)  + c \\

 \tt \:  = {e}^{x}\bigg(\dfrac{x + 1 - 2}{x + 1}\bigg)  + c \\

 \tt \:  = {e}^{x}\bigg(\dfrac{x  - 1}{x + 1}\bigg)  + c \\

Hence,

\rm\implies \:\boxed{ \rm{ \:\tt \:\displaystyle\int\tt  \frac{ {x}^{2}  + 1}{ {(x + 1)}^{2} }{e}^{x}dx   = {e}^{x}\bigg(\dfrac{x  - 1}{x + 1}\bigg)  + c \: }} \\

\rule{190pt}{2pt}

Remark :-

Proof of the property :-

\boxed{ \rm{ \:\displaystyle\int\tt {e}^{x}[ \: f(x) + f'(x) \: ] \: dx \:  =  \: {e}^{x} \: f(x) + c \:  \: }} \\

Consider

\displaystyle\int\tt {e}^{x}[ \: f(x) + f'(x) \: ] \: dx

\rm \:  = \displaystyle\int\tt {e}^{x}\: f(x) \: dx + \displaystyle\int\tt {e}^{x}f'(x) \: dx

Now, using integration by parts in first integral, we get

\rm \:  = f(x)\displaystyle\int\tt {e}^{x} \: dx - \displaystyle\int\tt \bigg[\dfrac{d}{dx} f(x)\displaystyle\int\tt {e}^{x}dx\bigg] + \displaystyle\int\tt {e}^{x}f'(x) \: dx \\

\tt \:  = f(x) {e}^{x} \: - \displaystyle\int\tt \: {e}^{x}f'(x) \: dx+ \displaystyle\int\tt {e}^{x}f'(x) \: dx + c \\

\tt \:  ={e}^{x} f(x) \:  + c \\

Hence,

\rm\implies \:\boxed{ \rm{ \:\displaystyle\int\tt {e}^{x}[ \: f(x) + f'(x) \: ] \: dx = {e}^{x}f(x) + c  \: }}\:  \\

Similar questions