Math, asked by devansh9257, 1 day ago

Evaluate the following integral with complete steps

 \int \: (log(logx) +  \frac{1}{ {(logx)}^{2} } ) \: dx \\

Answers

Answered by mathdude500
29

\large\underline{\sf{Solution-}}

Given integral is

\rm \: \displaystyle\int\rm \bigg(log(logx) + \dfrac{1}{ {(logx)}^{2} } \bigg) \: dx \\

To solve this integral, we use method of substitution.

So, substituting

\rm \: logx = y \\

\rm \: x =  {e}^{y} \\

\rm \: dx =  {e}^{y}dy \\

So, on substituting all these values, we get

\rm \:  = \displaystyle\int\rm \bigg(logy + \dfrac{1}{ {y}^{2} } \bigg) {e}^{y} \: dy

\rm \:  = \displaystyle\int\rm \bigg(logy + \dfrac{1}{y}  - \dfrac{1}{y}  + \dfrac{1}{ {y}^{2} } \bigg) {e}^{y} \: dy \\

can be further rewritten as

\rm \:  = \displaystyle\int\rm \bigg(logy +  \dfrac{1}{y} \bigg)  {e}^{y}dy - \displaystyle\int\rm \bigg(\dfrac{1}{y}  - \dfrac{1}{ {y}^{2} } \bigg) {e}^{y}dy \\

We know,

\boxed{ \rm{ \:\displaystyle\int\rm  {e}^{x}[f(x) + f'(x)]dx \:  =  \:  {e}^{x}f(x) + c \: }} \\

So, for the first integral,

\rm \: f(y) = logy \\

\rm \: f'(y) =  \dfrac{1}{y}  \\

And, for the second integral,

\rm \: f(y) =  \dfrac{1}{y}  \\

\rm \: f'(y) =  -  \dfrac{1}{ {y}^{2} }  \:  \\

So, using the above formula, we get

\rm \:  =  \:  {e}^{y}logy \:  -  \:  {e}^{y} \times  \dfrac{1}{y}  + c \\

\rm \:  =  \:  {e}^{y}\bigg(logy - \dfrac{1}{y} \bigg)  + c \\

\rm \:  =  \:  x\bigg(log(logx) - \dfrac{1}{logx} \bigg)  + c \\

Hence,

\rm \:\displaystyle\int\rm \bigg(log(logx) +  \frac{1}{ {(logx)}^{2} } \bigg)dx= x\bigg(log(logx)-\dfrac{1}{logx} \bigg)+ c \\

\rule{190pt}{2pt}

Remark :- Proof of the property

\boxed{ \rm{ \:\displaystyle\int\rm  {e}^{x}[f(x) + f'(x)]dx \:  =  \:  {e}^{x}f(x) + c \: }} \\

Consider,

\rm \: \displaystyle\int\rm  {e}^{x}[f(x) + f'(x)] \: dx \\

\rm \:  = \displaystyle\int\rm  {e}^{x}f(x)dx + \displaystyle\int\rm {e}^{x}f'(x) \: dx \\

Now, using integration by parts in first integral, we get

\rm \:  = f(x)\displaystyle\int\rm  {e}^{x}dx  - \displaystyle\int\rm \bigg[\dfrac{d}{dx}f(x)\displaystyle\int\rm {e}^{x}dx \bigg]dx+ \displaystyle\int\rm {e}^{x}f'(x) \: dx \\

\rm \:  = {e}^{x}f(x) - \displaystyle\int\rm {e}^{x}f'(x) \: dx + \displaystyle\int\rm {e}^{x}f'(x) \: dx \:  +  \: c \\

\rm \:  = \:  {e}^{x}f(x)\:  +  \: c \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Answered by maheshtalpada412
14

Step-by-step explanation:

 \text{Let \( \displaystyle\rm  \quad I=\int\left\{\log (\log x)+\frac{1}{(\log x)^{2}}\right\} d x \)}

 \text{Let Put } \rm \log x=t

 \[ \begin{array}{rlr}   \displaystyle\rm \Rightarrow x & \displaystyle\rm=e^{t} \quad \Rightarrow d x=e^{t} d t \\  \\ & \displaystyle\rm=\int\left(\log t+\frac{1}{t^{2}}\right) e^{t} d t \\ \\  & \displaystyle\rm=\int e^{t} \cdot\left(\log t+\frac{1}{t}-\frac{1}{t}+\frac{1}{t^{2}}\right) d t \quad \quad \text { (Note this step) }\\  \\ &\displaystyle\rm =\int e^{t} \cdot\left(\log t+\frac{1}{t}\right) d t-\int e^{t}\left(\frac{1}{t}-\frac{1}{t^{2}}\right) d t \\  \\ & \displaystyle\rm=e^{t} \cdot \log t-e^{t} \cdot \frac{1}{t}+c  \\ \\  & \displaystyle\rm=x \cdot \log (\log x)-x \cdot \frac{1}{\log x}+c\\ \\  & \boxed{\color{violet} \displaystyle\rm=x\left\{\log (\log x)-\frac{1}{\log x}\right\}+c }\quad \quad\left(\begin{array}{c}\displaystyle\rm \because t=\log x \\\displaystyle\rm x=e^{t} \end{array}\right) \end{array} \]

Similar questions