Math, asked by vaishnavipatil1624, 1 month ago

Evaluate the following integrals...
.
.
.
.​

Attachments:

Answers

Answered by senboni123456
3

Step-by-step explanation:

We have,

 \int  \bigg \{ ( \tan(x)  +  \cot(x))^{2} +  \frac{1}{x} +  {e}^{x}   \bigg\}dx\\

  = \int  \bigg \{  \tan^{2} (x)  +  \cot^{2} (x) + 2 +  \frac{1}{x} +  {e}^{x}   \bigg\}dx\\

  = \int  \bigg \{  \tan^{2} (x)   + 1+  \cot^{2} (x) + 1 +  \frac{1}{x} +  {e}^{x}   \bigg\}dx\\

  = \int  \bigg \{   \sec^{2} (x)   +  \cosec^{2} (x) +  \frac{1}{x} +  {e}^{x}   \bigg\}dx\\

  = \int    \sec^{2} (x)dx   + \int  \cosec^{2} (x) dx+  \int \frac{1}{x} \: dx +   \int{e}^{x}  dx\\

  =    \tan (x)   -   \cot (x)+  \ln(x) +  {e}^{x}  + c\\

Answered by mathdude500
9

\large\underline{\bold{Given \:Question - }}

Evaluate the following integral :-

\displaystyle\int\sf  \bigg[{(tanx + cotx)}^{2} +  \frac{1}{x} + {e}^{x}\bigg] \: dx

 \red{\large\underline{\sf{Solution-}}}

Given integral is

\rm :\longmapsto\:\displaystyle\int\sf  \bigg[{(tanx + cotx)}^{2} +  \frac{1}{x} + {e}^{x}\bigg] \: dx

We know,

\boxed{ \bf{ \: {(x + y)}^{2} =  {x}^{2} +  {y}^{2} + 2xy \: }}

So, using this, we get

\rm \:=\displaystyle\int\sf \bigg[ {tan}^{2}x +  {cot}^{2}x + 2tanxcotx +  \frac{1}{x} + {e}^{x} \bigg]dx

We know,

\boxed{ \bf{ \:cotx =  \frac{1}{tanx}}}

So, using this, we get

\rm \:=\displaystyle\int\sf \bigg[ {tan}^{2}x +  {cot}^{2}x + 2tanx \times  \frac{1}{tanx}  +  \frac{1}{x} + {e}^{x} \bigg]dx

\rm \:=\displaystyle\int\sf \bigg[ {tan}^{2}x +  {cot}^{2}x + 2+  \frac{1}{x} + {e}^{x} \bigg]dx

\rm \:=\displaystyle\int\sf \bigg[( {sec}^{2}x - 1) +  ({cosec}^{2}x  - 1)+ 2+  \frac{1}{x} + {e}^{x} \bigg]dx

\rm \:=\displaystyle\int\sf \bigg[{sec}^{2}x - 1 +{cosec}^{2}x -1+ 2+  \frac{1}{x} + {e}^{x} \bigg]dx

\rm \:=\displaystyle\int\sf \bigg[{sec}^{2}x +{cosec}^{2}x+  \frac{1}{x} + {e}^{x} \bigg]dx

\rm \:=\displaystyle\int\sf {sec}^{2}x dx+\displaystyle\int\sf {cosec}^{2}xdx+  \displaystyle\int\sf \frac{1}{x}dx +\displaystyle\int\sf  {e}^{x}dx

\rm \:  =  \: tanx - cotx +  log(x) + {e}^{x} + c

Additional Information :-

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Similar questions