Math, asked by vaishnavipatil1624, 1 month ago

Evaluate the following integrals ...​

Attachments:

Answers

Answered by nandika32
1

Answer:

Please mark BRAINLIEST...

Attachments:
Answered by mathdude500
8

\large\underline{\bold{Given \:Question - }}

 \sf \: f'(x) =  {6x}^{2} - 4x + 5, \: f(0) = 5, \: then \: find \: f(x).

 \red{\large\underline{\sf{Solution-}}}

Given function is

\rm :\longmapsto\: \sf \: f'(x) =  {6x}^{2} - 4x + 5

On integrating both sides w. r. t. x, we get

\rm :\longmapsto\: \sf \: \displaystyle\int\sf f'(x)  \: dx= \displaystyle\int\sf \bigg[ {6x}^{2} - 4x + 5\bigg] \: dx

\rm :\longmapsto\: \sf \:  f(x)= \displaystyle\int\sf {6x}^{2}dx - \displaystyle\int\sf 4xdx + \displaystyle\int\sf 5 \: dx

\rm :\longmapsto\: \sf \:  f(x) =6 \displaystyle\int\sf {x}^{2}dx -4 \displaystyle\int\sf xdx +5 \displaystyle\int\sf \: dx

We know,

\boxed{ \bf{ \:\displaystyle\int\sf  {x}^{n}dx =  \frac{ {x}^{n + 1} }{n + 1} + c \:  \: }}

So, using this, we get

\sf :\longmapsto\:f(x) = 6\bigg[\dfrac{ {x}^{3} }{3} \bigg] - 4\bigg[\dfrac{ {x}^{2} }{2} \bigg] + 5x + c

\sf :\longmapsto\:f(x) =  {2x}^{3} -  {2x}^{2}  + 5x + c

On substituting x = 0, we get

\sf :\longmapsto\:f(0) =  {2(0)}^{3} -  {2(0)}^{2}  + 5(0) + c

\bf\implies \:c = 5

Thus,

\sf :\longmapsto\:\boxed{ \bf{  \:  \: \:f(x) =  {2x}^{3} -  {2x}^{2}  + 5x + 5 \:  \:  \: }}

Additional Information :-

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Similar questions