Math, asked by vaishnavipatil1624, 13 hours ago

Evaluate the following integrals...​

Attachments:

Answers

Answered by TrustedAnswerer19
16

{\orange{ \boxed{\boxed{\begin{array}{cc}\displaystyle \int \rm \:  \sqrt{1 + cos3x} \:  \: dx \\  \\  \pink{ {\boxed{\begin{array}{cc}\rm  \:Substitute \:  \:  \: u = 3x \\  \implies \rm \: du = 3 \: dx \\  \therefore \rm \:   \frac{1}{3} du =  \: dx \end{array}}}} \\  \\   = \frac{1}{3}  \displaystyle \int \rm \: \sqrt{1 + cos \: u}  \:  \: du\\  \\ \pink{ {\boxed{\begin{array}{cc}\rm  \: we \: know \: that \\  \rm1 + cos2x = 2 {cos}^{2}x \\ \therefore  \: 1 + cos \: x = 2 {cos}^{2} \frac{x}{2}\end{array}}}}  \\  \\ = \frac{1}{3}  \displaystyle \int \rm \: \sqrt{2{cos}^{2} \frac{u}{2}  }  \:  \: du</p><p> \\  \\  =  \frac{1}{3} \displaystyle \int \rm \: \sqrt{2} \: cos \frac{u}{2}    \: \: du  \\  \\ \pink{ {\boxed{\begin{array}{cc}\rm  \:Substitute \:  \: v =  \frac{u}{2}  \\  \implies \rm \: dv =  \frac{1}{2}   \: du \\  \therefore \rm \:  du = 2 \: dv\end{array}}}} \\  \\  =  \frac{1}{3} \displaystyle \int \rm \: \sqrt{2}  \: cos  \: v \:  \: .2 \: dv \\  \\  = \frac{1}{3}   \times {2}^{ \frac{3}{2} }  \displaystyle \int \rm \: cos \: v \:  \: dv \\  \\\pink{ {\boxed{\begin{array}{cc}\rm  \:\displaystyle \int \rm \:cos \: x \:  \: dx = sin \: x + c\end{array}}}} \\  \\  = \rm \:   \frac{1}{3}  \times  {2}^{ \frac{3}{2} } \: sin \: v + c  \\  \\  \rm =  \frac{1}{3} \times   {2}^{ \frac{3}{2} }.sin \frac{u}{2}  + c \\  \\  \rm = \frac{1}{3}   \times  {2}^{ \frac{3}{2} } .sin \frac{3x}{2}  + c  \\  \\  \rm =  \frac{ {2}^{ \frac{3}{2} } .sin \frac{3x}{2} }{3}  + c \\  \\  \sf =  \: answer\end{array}}}}}

\pink{\ddot{\smile}}

Answered by mathdude500
8

\large\underline{\bold{Given \:Question - }}

Evaluate the following integral

\displaystyle\int\sf  \sqrt{1 + cos3x}  \: dx

 \red{\large\underline{\sf{Solution-}}}

The given integral is

\rm :\longmapsto\:\displaystyle\int\sf  \sqrt{1 + cos3x}  \: dx

We know,

\boxed{ \bf{ \:1 + cos2x =  {2cos}^{2}x}}

So, using this identity, we get

\rm \:  =  \:\displaystyle\int\sf   \sqrt{2 {cos}^{2} \bigg[\dfrac{3x}{2} \bigg]}  \: dx

\rm \:  =  \:  \sqrt{2}\displaystyle\int\sf cos\bigg[\dfrac{3x}{2} \bigg] \: dx

We know,

\boxed{ \bf{ \:\displaystyle\int\sf cos(ax + b) \: dx \:  =  \:  \frac{sin(ax + b)}{a} + c \:  \: }}

\rm \:  =  \:  \sqrt{2} \times \dfrac{sin\bigg[\dfrac{3x}{2} \bigg]}{\dfrac{3}{2} }  + c

\rm \:  =  \: \dfrac{2 \sqrt{2} }{3} \: sin\dfrac{3x}{2} \:  +  \: c

Additional Information :-

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) &amp; \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} &amp; \frac{\qquad \qquad}{} \\ \sf k &amp; \sf kx + c \\ \\ \sf sinx &amp; \sf - \: cosx+ c \\ \\ \sf cosx &amp; \sf \: sinx + c\\ \\ \sf {sec}^{2} x &amp; \sf tanx + c\\ \\ \sf {cosec}^{2}x &amp; \sf - cotx+ c \\ \\ \sf secx \: tanx &amp; \sf secx + c\\ \\ \sf cosecx \: cotx&amp; \sf - \: cosecx + c\\ \\ \sf tanx &amp; \sf logsecx + c\\ \\ \sf \dfrac{1}{x} &amp; \sf logx+ c\\ \\ \sf {e}^{x} &amp; \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Similar questions