Math, asked by vaishnavipatil1624, 1 month ago

Evaluate the following integrals.
.
.
.
If anyone knows pls answer this fast...

Attachments:

Answers

Answered by mathdude500
3

\large\underline{\bold{Given \:Question - }}

Evaluate the following integral

 \sf \: \displaystyle\int\sf  {cot}^{ - 1}\bigg[\dfrac{cos6x + sin6x}{cos6x - sin6x} \bigg] \: dx

 \red{\large\underline{\sf{Solution-}}}

The given integral is

\rm :\longmapsto\: \sf \: \displaystyle\int\sf  {cot}^{ - 1}\bigg[\dfrac{cos6x + sin6x}{cos6x - sin6x} \bigg] \: dx

We know

\boxed{ \bf{ \: {cot}^{1}x =  {tan}^{ - 1}\bigg[\dfrac{1}{x} \bigg]}}

So, using this we get

\rm \:  =  \: \displaystyle\int\sf {tan}^{ - 1}\bigg[\dfrac{cos6x - sin6x}{cos6x + sin6x} \bigg] \: dx

Divide numerator and denominator by cos6x, we get

\rm \:  =  \: \displaystyle\int\sf {tan}^{ - 1}\bigg[\dfrac{1 - tan6x}{1 + tan6x} \bigg] \: dx

can be rewritten as

\rm \:  =  \: \displaystyle\int\sf {tan}^{ - 1}\bigg[\dfrac{1 - tan6x}{1 + tan6x \times 1} \bigg] \: dx

We know,

\boxed{ \bf{ \:{tan}^{ - 1}\bigg[\dfrac{x  - y}{1 + xy} \bigg] = {tan}^{ - 1}x - {tan}^{ - 1}y}}

So, using this identity we get

\rm \:  =  \: \displaystyle\int\sf \bigg[{tan}^{ - 1}1 - {tan}^{ - 1}(tan6x)\bigg] \: dx

\rm \:  =  \: \displaystyle\int\sf \bigg[\dfrac{\pi}{4}  - 6x\bigg] \: dx

We know,

\boxed{ \bf{ \:\displaystyle\int\sf kdx \:  =  \: kx + c \:  \: }}

and

\boxed{ \bf{ \:\displaystyle\int\sf   {x}^{n} \: dx \:  =  \:  \frac{ {x}^{n + 1} }{n + 1}   \: +  \: c \:  \: }}

So, using these, we get

\rm \:  =  \: \dfrac{\pi}{4}x  - 6\bigg[\dfrac{ {x}^{2} }{2} \bigg] + c

\rm \:  =  \: \dfrac{\pi}{4}x  -  {3x}^{2} + c

Hence,

\rm :\longmapsto\:\boxed{ \bf{ \: \sf \: \displaystyle\int\sf  {cot}^{ - 1}\bigg[\dfrac{cos6x + sin6x}{cos6x - sin6x} \bigg] \: dx = \dfrac{\pi \: x}{4} -  {3x}^{2} + c}}

Additional Information :-

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Similar questions