Math, asked by dusharbedi8, 7 months ago

evaluate the following integrals: integral[1/9x^2+6x+5]DX​

Answers

Answered by Asterinn
2

 \implies \displaystyle \int ( \dfrac{1}{9}  {x}^{2}  + 6x + 5)dx

\implies \displaystyle \int \dfrac{1}{9}  {x}^{2}   \: dx+\displaystyle \int 6x \: dx +\displaystyle \int 5dx

\implies \dfrac{1}{9}\displaystyle \int   {x}^{2}   \: dx+6\displaystyle \int x \: dx +5\displaystyle \int 1 \:  \:dx

\implies( \dfrac{1}{9} \times   \dfrac{ {x}^{3}}{3}    \: )+(6  \times   \dfrac{{x}^{2} }{2} ) +5x + c

\implies  \dfrac{ {x}^{3}}{27}    \:+(3\times   \dfrac{{x}^{2} }{1} ) +5x + c

\implies  \dfrac{ {x}^{3}}{27}    \:+3{x}^{2}+5x

Answer :

\dfrac{ {x}^{3}}{27}    \:+3{x}^{2}+5x

___________________

Learn more :-

∫ 1 dx = x + C

∫ sin x dx = – cos x + C

∫ cos x dx = sin x + C

∫ sec2 dx = tan x + C

∫ csc2 dx = -cot x + C

∫ sec x (tan x) dx = sec x + C

∫ csc x ( cot x) dx = – csc x + C

∫ (1/x) dx = ln |x| + C

∫ ex dx = ex+ C

∫ ax dx = (ax/ln a) + C

___________________

Similar questions