Math, asked by vaishnavipatil1624, 1 month ago

Evaluate the following integrals.
.
.
.
Plss answer fast​

Attachments:

Answers

Answered by mathdude500
6

\large\underline{\bold{Given \:Question - }}

Evaluate the following integral

\displaystyle\int\sf  \bigg[{e}^{3alogx} + {e}^{3xloga}\bigg] \: dx

\large\underline{\sf{Solution-}}

The given integral is

\rm :\longmapsto\:\displaystyle\int\sf  \bigg[{e}^{3alogx} + {e}^{3xloga}\bigg] \: dx

We know,

\boxed{ \bf{ \:bloga = log {a}^{b}}}

So, using this, we get

\rm \:  =  \: \displaystyle\int\sf \bigg[{e}^{log {x}^{3a} } + {e}^{log {a}^{3x} }\bigg] \: dx

We know,

\boxed{ \bf{ \: {e}^{logx} = x \: }}

\rm \:  =  \: \displaystyle\int\sf \bigg[ {x}^{3a}  +  {a}^{3x}\bigg] \: dx

We know,

\boxed{ \bf{ \:\displaystyle\int\sf  {x}^{n} \: dx \:  =  \:  \frac{ {x}^{n + 1} }{n + 1}  \:  +  \: c \:  \: }}

and

\boxed{ \bf{ \:\displaystyle\int\sf  {a}^{x} \: dx \:  =  \:  \frac{ {a}^{x} }{loga} \:  +  \: c \:  \: }}

So, using this, we get

\rm \:  =  \: \dfrac{ {x}^{3a + 1} }{3(3a + 1)}  + \dfrac{ {a}^{3x} }{3 \: loga}  + c

 \red{\boxed{ \bf{ \:\displaystyle\int\sf \bigg[{e}^{3alogx} + {e}^{3xloga}\bigg]dx=  \: \dfrac{ {x}^{3a + 1} }{3(3a + 1)}  + \dfrac{ {a}^{3x} }{3 \: loga}  + c}}}

Additional Information :-

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Answered by Renumahala2601
7

 </p><p>\large\underline{\bold{Given \:Question - }} </p><p>

Evaluate the following integral

\displaystyle\int\sf \bigg[{e}^{3alogx} + {e}^{3xloga}\bigg] \: dx∫[e </p><p>3alogx</p><p> +e </p><p>3xloga</p><p> ]dx

\large\underline{\sf{Solution-}} </p><p>

The given integral is

</p><p>\rm :\longmapsto\:\displaystyle\int\sf \bigg[{e}^{3alogx} + {e}^{3xloga}\bigg] \: dx:⟼∫[e </p><p>3alogx</p><p> +e </p><p>3xloga</p><p> ]dx</p><p></p><p>

We know,

</p><p>\boxed{ \bf{ \:bloga = log {a}^{b}}} </p><p>

So, using this, we get

\rm \:  =  \: \displaystyle\int\sf \bigg[{e}^{log {x}^{3a} } + {e}^{log {a}^{3x} }\bigg] \: dx = ∫[e </p><p>logx </p><p>3a</p><p> </p><p> +e </p><p>loga </p><p>3x</p><p> </p><p> ]dx</p><p>

We know,

\boxed{ \bf{ \: {e}^{logx} = x \: }} </p><p>e

\rm \:  =  \: \displaystyle\int\sf \bigg[ {x}^{3a} + {a}^{3x}\bigg] \: dx = ∫[x </p><p>3a</p><p> +a </p><p>3x</p><p> ]dx

We know,

\boxed{ \bf{ \:\displaystyle\int\sf {x}^{n} \: dx \: = \: \frac{ {x}^{n + 1} }{n + 1} \: + \: c \: \: }} </p><p></p><p></p><p> </p><p></p><p>and

</p><p>\boxed{ \bf{ \:\displaystyle\int\sf {a}^{x} \: dx \: = \: \frac{ {a}^{x} }{loga} \: + \: c \: \: }} </p><p>

So, using this, we get

</p><p>\rm \:  =  \: \dfrac{ {x}^{3a + 1} }{3(3a + 1)} + \dfrac{ {a}^{3x} }{3 \: loga} + c =  </p><p>3(3a+1)</p><p>x </p><p>3a+1</p><p> </p><p></p><p> + </p><p>3loga</p><p>a </p><p>3x</p><p> </p><p></p><p> +c

\red{\boxed{ \bf{ \:\displaystyle\int\sf \bigg[{e}^{3alogx} + {e}^{3xloga}\bigg]dx=  \: \dfrac{ {x}^{3a + 1} }{3(3a + 1)} + \dfrac{ {a}^{3x} }{3 \: loga} + c}}} </p><p>∫[e </p><p>3alogx</p><p> +e </p><p>3xloga</p><p> ]dx=  </p><p>3(3a+1)</p><p>x </p><p>3a+1</p><p> </p><p></p><p> + </p><p>3loga</p><p>a </p><p>3x</p><p> </p><p></p><p> +c</p><p></p><p> </p><p></p><p>Additional Information :-</p><p>\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) &amp; \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} &amp; \frac{\qquad \qquad}{} \\ \sf k &amp; \sf kx + c \\ \\ \sf sinx &amp; \sf - \: cosx+ c \\ \\ \sf cosx &amp; \sf \: sinx + c\\ \\ \sf {sec}^{2} x &amp; \sf tanx + c\\ \\ \sf {cosec}^{2}x &amp; \sf - cotx+ c \\ \\ \sf secx \: tanx &amp; \sf secx + c\\ \\ \sf cosecx \: cotx&amp; \sf - \: cosecx + c\\ \\ \sf tanx &amp; \sf logsecx + c\\ \\ \sf \dfrac{1}{x} &amp; \sf logx+ c\\ \\ \sf {e}^{x} &amp; \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}\end{gathered} </p><p>f(x)</p><p></p><p> </p><p>k</p><p>sinx</p><p>cosx</p><p>sec </p><p>2</p><p> x</p><p>cosec </p><p>2</p><p> x</p><p>secxtanx</p><p>cosecxcotx</p><p>tanx</p><p>x</p><p>1</p><p></p><p> </p><p>e </p><p>x</p><p> </p><p></p><p>  </p><p>∫f(x)dx</p><p></p><p> </p><p>kx+c</p><p>−cosx+c</p><p>sinx+c</p><p>tanx+c</p><p>−cotx+c</p><p>secx+c</p><p>−cosecx+c</p><p>logsecx+c</p><p>logx+c</p><p>e </p><p>x</p><p> +c</p><p></p><p> </p><p></p><p>

Similar questions