Math, asked by Anonymous, 4 months ago

Evaluate the following integrals :
 \displaystyle  \sf \int \sqrt{x}  \: tan \bigg  \{2 {tan}^{ - 1} \bigg( \dfrac{ \sqrt{ \sqrt{1  +  \sqrt{x}}   + 1}  \: -   \sqrt{ \sqrt{1  +  \sqrt{x}  } - 1 }  }{ \sqrt{ \sqrt{1  +  \sqrt{x}}   + 1}  \:  +  \sqrt{ \sqrt{1  +  \sqrt{x}  } - 1 }}  \bigg) \bigg \} \: dx

Answers

Answered by shadowsabers03
85

Consider the fraction,

\longrightarrow F=\dfrac{\sqrt{\sqrt{1+\sqrt x}+1}-\sqrt{\sqrt{1+\sqrt x}-1}}{\sqrt{\sqrt{1+\sqrt x}+1}+\sqrt{\sqrt{1+\sqrt x}-1}}

Dividing both numerator and denominator by \sqrt{\sqrt{1+\sqrt x}+1},

\longrightarrow F=\dfrac{\left(1-\sqrt{\dfrac{\sqrt{1+\sqrt x}-1}{\sqrt{1+\sqrt x}+1}}\right)}{\left(1+\sqrt{\dfrac{\sqrt{1+\sqrt x}-1}{\sqrt{1+\sqrt x}+1}}\right)}\quad\quad\dots(1)

Put,

\longrightarrow\sqrt{\dfrac{\sqrt{1+\sqrt x}-1}{\sqrt{1+\sqrt x}+1}}=\tan\theta

\longrightarrow\dfrac{\sqrt{1+\sqrt x}-1}{\sqrt{1+\sqrt x}+1}=\tan^2\theta

By rule of componendo and dividendo,

\longrightarrow\sqrt{1+\sqrt x}=\dfrac{1+\tan^2\theta}{1-\tan^2\theta}

\longrightarrow\sqrt{1+\sqrt x}=\sec(2\theta)\quad\left[\because\cos(2\theta)=\dfrac{1-\tan^2\theta}{1+\tan^2\theta}\right]

\longrightarrow1+\sqrt x=\sec^2(2\theta)

\longrightarrow\sqrt x=\sec^2(2\theta)-1

\longrightarrow\sqrt x=\tan^2(2\theta)\quad[\because\sec^2(2\theta)-\tan^2(2\theta)=1]

\longrightarrow x=\tan^4(2\theta)

\longrightarrow dx=4\tan^3(2\theta)\cdot\sec^2(2\theta)\cdot2\ d\theta

\longrightarrow dx=8\tan^3(2\theta)\sec^2(2\theta)\ d\theta

Then (1) becomes,

\longrightarrow F=\dfrac{1-\tan\theta}{1+\tan\theta}

\longrightarrow F=\tan\left(\dfrac{\pi}{4}-\theta\right)

We're given the integral,

\displaystyle\longrightarrow I=\int\sqrt x\tan\left[2\tan^{-1}\left(\dfrac{\sqrt{\sqrt{1+\sqrt x}+1}-\sqrt{\sqrt{1+\sqrt x}-1}}{\sqrt{\sqrt{1+\sqrt x}+1}+\sqrt{\sqrt{1+\sqrt x}-1}}\right)\right]\ dx

which becomes,

\displaystyle\longrightarrow I=\int\tan^2(2\theta)\tan\left[2\tan^{-1}\left(\tan\left(\dfrac{\pi}{4}-\theta\right)\right)\right]\cdot 8\tan^3(2\theta)\sec^2(2\theta)\ d\theta

\displaystyle\longrightarrow I=8\int\tan^5(2\theta)\tan\left[2\left(\dfrac{\pi}{4}-\theta\right)\right]\sec^2(2\theta)\ d\theta

\displaystyle\longrightarrow I=8\int\tan^5(2\theta)\tan\left(\dfrac{\pi}{2}-2\theta\right)\sec^2(2\theta)\ d\theta

\displaystyle\longrightarrow I=8\int\tan^5(2\theta)\cot(2\theta)\sec^2(2\theta)\ d\theta

\displaystyle\longrightarrow I=4\int\tan^4(2\theta)\cdot 2\sec^2(2\theta)\ d\theta\quad\quad\dots(2)

Put,

\longrightarrow u=\tan(2\theta)

\longrightarrow du=2\sec^2(2\theta)\ d\theta

Then (2) becomes,

\displaystyle\longrightarrow I=4\int u^4\ du

\displaystyle\longrightarrow I=\dfrac{4}{5}\,u^5+C

Undoing u=\tan(2\theta),

\displaystyle\longrightarrow I=\dfrac{4}{5}\tan^5(2\theta)+C

\displaystyle\longrightarrow I=\dfrac{4}{5}\left(\tan^4(2\theta)\right)^{\frac{5}{4}}+C

Undoing x=\tan^4(2\theta),

\displaystyle\longrightarrow\underline{\underline{I=\dfrac{4}{5}\,x^{\frac{5}{4}}+C}}


Steph0303: Great Answe :)
Answered by bandunihema4
3

plz mark me as brainlist

Attachments:
Similar questions