Math, asked by swanhayden7, 23 days ago

Evaluate the following integration
 \int \frac{dx}{a + b {e}^{x} }

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given integral is

\rm \: \displaystyle\int\rm  \frac{dx}{a \:  +  \: b \:  {e}^{x} }  \\

can be rewritten as

\rm \: =  \:  \displaystyle\int\rm  \frac{1}{a \:  +  \: \dfrac{b}{{e}^{ - x}}  } \: dx \:   \\

\rm \: =  \:  \displaystyle\int\rm  \frac{1}{\dfrac{a{e}^{ - x} + b}{{e}^{ - x}}  } \: dx \:   \\

\rm \: =  \:\displaystyle\int\rm  \frac{{e}^{ - x}}{a{e}^{ - x} + b}  \: dx \\

Now, we use substitution method to solve this integral.

So, Substitute

\rm \: a{e}^{ - x} + b = y \\

\rm \: \dfrac{d}{dx}( a{e}^{ - x} + b) = \dfrac{d}{dx}y \\

\rm \: -  a{e}^{ - x} \:  =  \: \dfrac{dy}{dx} \\

\rm \: {e}^{ - x} \: dx \:  =  \:   -  \: \dfrac{dy}{a}  \\

So, on substituting these values in above integral, we get

\rm \: =  \: - \dfrac{1}{a}\displaystyle\int\rm  \frac{dy}{y}  \\

\rm \: =  \: - \dfrac{1}{a} \: log |y| + c   \\

\rm \: =  \: - \dfrac{1}{a} \: log \bigg|a{e}^{ - x} + b\bigg| + c   \\

Hence,

\boxed{\sf{  \: \: \rm \:\displaystyle\int\rm  \frac{dx}{a + b{e}^{x}}  =  \: -  \: \dfrac{1}{a} \: log \bigg|a{e}^{ - x} + b\bigg| + c  \:  \: }}  \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Similar questions