Math, asked by MichWorldCutiestGirl, 7 hours ago

Evaluate the following limit, if it exists :
\sf \lim_{x \to 4} \rm{ \dfrac{ {2x}^{3} - 128 }{ \sqrt{x} - 2}}

Answer with proper explanation.

Don't Dare for spam.

→ Expecting answer from :

★ Moderators
★ Brainly stars and teacher
★ Others best users ​​​​

Answers

Answered by anindyaadhikari13
16

\textsf{\large{\underline{Solution}:}}

We have to evaluate the given limit.

\displaystyle \rm =\lim_{x \to4} \bigg( \dfrac{2 {x}^{3}  - 128}{ \sqrt{x} - 2 }  \bigg)

If we put x = 4, we will get indeterminate form. So, we will first transform the numerator.

\displaystyle \rm =\lim_{x \to4} \bigg( \dfrac{2 ({x}^{3}  - 64)}{ \sqrt{x} - 2 }  \bigg)

\displaystyle \rm =\lim_{x \to4} \dfrac{2 ({x}^{3}  -  {4}^{3} )}{ \sqrt{x} - 2 }

\displaystyle \rm =\lim_{x \to4} \dfrac{2 (x - 4)( {x}^{2}  + 4x + 16)}{ \sqrt{x} - 2 }

\displaystyle \rm =\lim_{x \to4} \dfrac{2 ( {( \sqrt{x}) }^{2}  -  {2}^{2} )( {x}^{2}  + 4x + 16)}{ \sqrt{x} - 2 }

\displaystyle \rm =\lim_{x \to4} \dfrac{2 ( \sqrt{x}  + 2)( \sqrt{x} - 2  )( {x}^{2}  + 4x + 16)}{ \sqrt{x} - 2 }

\displaystyle \rm =\lim_{x \to4} 2 ( \sqrt{x}  + 2)( {x}^{2}  + 4x + 16 )

\displaystyle \rm =2 ( \sqrt{4}  + 2)( {4}^{2}  + 4 \times 4+ 16 )

\displaystyle \rm =2 \times 4 \times 48

\displaystyle \rm =384

Therefore:

\displaystyle \rm \longrightarrow \lim_{x \to4} \bigg( \dfrac{2 {x}^{3}  - 128}{ \sqrt{x} - 2 }  \bigg) = 384

\textsf{\large{\underline{Learn More}:}}

\displaystyle\rm 1.\:\: \lim_{x\to0}\sin(x)=0

\displaystyle\rm 2.\:\: \lim_{x\to0}\cos(x)=1

\displaystyle\rm 3.\:\: \lim_{x\to0}\dfrac{\sin(x)}{x}=1

\displaystyle\rm 4.\:\: \lim_{x\to0}\dfrac{\tan(x)}{x}=1

\displaystyle\rm 5.\:\: \lim_{x\to0}\dfrac{1-\cos(x)}{x}=0

\displaystyle\rm 6.\:\: \lim_{x\to0}\dfrac{\sin^{-1}(x)}{x}=1

\displaystyle\rm 7.\:\: \lim_{x\to0}\dfrac{\tan^{-1}(x)}{x}=1

\displaystyle\rm 8.\:\: \lim_{x\to0}\dfrac{\log(1+x)}{x}=1

\displaystyle\rm 9.\:\: \lim_{x\to0}\dfrac{e^{x}-1}{x}=1


anindyaadhikari13: Thanks for the Brainliest ^_^
Similar questions