Math, asked by Anonymous, 9 months ago

Evaluate the following limit Show all process step by step

Attachments:

Answers

Answered by Anonymous
10

AnswEr :

Given,

 \sf \: lim. \: \:  \:  \:  \:  \:  \:   \dfrac{1 -  \tan(x) }{x -  \frac{\pi}{4} } \\   \sf{x \longrightarrow \:  \frac{\pi}{4} }

At π/4,the above function tends to 0/0 form which is indeterminate.

Using L'Hospital's Rule,

 \implies \: \sf \: lim. \: \:  \:  \:  \:  \:  \:   \dfrac{ \dfrac{d(1 -  \tan(x)) }{dx}}{ \dfrac{d(x -   \:  \frac{\pi}{4})}{dx} } \\   \:  \:  \:  \:  \:  \:  \:  \:  \sf{x \longrightarrow \:  \frac{\pi}{4} }

Therefore,

 \implies \: \sf \: lim. \: \:  \:  \:  \:  \:  \:    \dfrac{0 -  {sec}^{2}x }{1 - 0}  \\   \:  \:  \:  \:  \:  \:  \:  \:  \sf{x \longrightarrow \:  \frac{\pi}{4} }

Substituting the limit,we get :

 \implies \:  \sf \:  - sec {}^{2} ( \dfrac{\pi}{4} ) \\  \\  \implies \sf - ( \sqrt{2} ) {}^{2}  \\  \\  \implies \sf - 2

Thus,the above function becomes - 2 for x tending to π/4

Similar questions