Math, asked by Anonymous, 2 months ago

Evaluate the following limit :
\displaystyle  \sf  \lim_{n \longrightarrow \:  \infty } \:  \dfrac{1 \times n +  {2}^{2}(n - 1) +  {3}^{2}  (n - 2) +  \cdots +  {n}^{2}  \times 1}{ {n}^{4} }

Answers

Answered by shadowsabers03
42

First the given series (in the numerator) is brought to be written under summation notation by its general term.

Here the general form of each term in the series is,

\displaystyle\sf{\longrightarrow a_r=r^2(n-r+1)}

So the sum can be written as summation of each \displaystyle\sf{a_r=r^2(n-r+1)} where \displaystyle\sf {r} ranges from \displaystyle\sf {1} to \displaystyle\sf {n.}

Hence the whole limit will be,

\displaystyle\sf{\longrightarrow L=\lim_{n\to\infty}\sum_{r=1}^n\dfrac{r^2(n-r+1)}{n^4}}

That \displaystyle\sf{\dfrac{1}{n^4}} can be taken outside the sum as its constant wrt \displaystyle\sf {r.}

Now \displaystyle\sf {r^2(n-r+1)} can be expanded as \displaystyle\sf {nr^2-r^3+r^2} and the sum can be distributed to each of the three terms.

After further simplifications, the following formulas are recalled.

  • \displaystyle\sf{\sum_{r=1}^nr^2=\dfrac{n(n+1)(2n+1)}{6}}
  • \displaystyle\sf{\sum_{r=1}^nr^3=\dfrac{n^2(n+1)^2}{4}}

On applying these sums and after further simplifications, we are getting three limits,

\displaystyle\sf{\longrightarrow L_1=\lim_{n\to\infty}\dfrac{(n+1)(2n+1)}{n^2}}

\displaystyle\sf{\longrightarrow L_2=\lim_{n\to\infty}\left(\dfrac{n+1}{n}\right)^2}

\displaystyle\sf{\longrightarrow L_3=\lim_{n\to\infty}\dfrac{(n+1)(2n+1)}{n^3}}

In each limit we make use of,

  • \displaystyle\sf {\lim_{n\to\infty}\dfrac{1}{n}=0}

by rewriting them as in the figure.

Hence we get,

\displaystyle\sf{\longrightarrow L_1=2}

\displaystyle\sf{\longrightarrow L_2=1}

\displaystyle\sf{\longrightarrow L_3=0}

Finally we get \displaystyle\bf {\dfrac{1}{12}} as the answer.

Attachments:

BrainlyIAS: Very nice :)
Atαrαh: splendid :3
amansharma264: Awesome
Asterinn: Perfect! :)
Answered by mathdude500
4

\begin{gathered}\Large{\bold{\pink{\underline{Formula \:  Used \::}}}}  \end{gathered}

 (1). \: \boxed{ \pink{ \rm \: \sum_{r=1}^n \: r \:  = \dfrac{n(n + 1)}{2} }}

(2). \: \boxed{ \pink{ \rm \: \sum_{r=1}^n} \:   \pink{{r}^{2} = \dfrac{n(n + 1)(2n + 1)}{6}  }}

(3). \: \boxed{ \pink{ \rm \: \sum_{r=1}^n \:  {r}^{3} = \dfrac{ {n}^{2}  {(n + 1)}^{2} }{4}  }}

(4). \: \boxed{ \pink{ \rm \:\lim_{n\to\infty} \: \dfrac{1}{n}  = 0 }}

\large\underline\purple{\bold{Solution :-  }}

Consider,

 \rm \lim_{n \longrightarrow \: \infty } \: \dfrac{1 \times n + {2}^{2}(n - 1) + {3}^{2} (n - 2) + \cdots + {n}^{2} \times 1}{ {n}^{4} }

\displaystyle \sf \lim_{n \longrightarrow \: \infty } \: \dfrac{1 \times (n  - 1 + 1)+ {2}^{2}(n - 2 + 1) + {3}^{2} (n - 3 + 1) + \cdots + {n}^{2} \times (n - n + 1)}{ {n}^{4} }

\displaystyle \sf \lim_{n \longrightarrow \: \infty } \: \dfrac{ {1}^{2}  \times (n  - (1 - 1)+ {2}^{2}(n - (2 - 1)) + {3}^{2} (n - (3 - 1)) + \cdots + {n}^{2} \times (1 + (n - n)}{ {n}^{4} }

 \rm \: \lim_{n\to\infty}\dfrac{\sum_{r=1}^n \:  {r}^{2}(n - (r - 1)) }{ {n}^{4} }

 \rm \:  = \lim_{n\to\infty}\dfrac{\sum_{r=1}^n \:  {r}^{2} (n - r + 1)}{ {n}^{4} }

 \rm \:  = \lim_{n\to\infty}\dfrac{\sum_{r=1}^n \: ( n{r}^{2}  -  {r}^{3}  +  {r}^{2} )}{ {n}^{4} }

 =  \rm \: \lim_{n\to\infty}\dfrac{n\sum_{r=1}^n {r}^{2}   \: - \sum_{r=1}^n {r}^{3}  + \sum_{r=1}^n {r}^{2} }{ {n}^{4} }

 =  \rm \: \lim_{n\to\infty}\dfrac{ {n}^{2} (n + 1)(2n + 1)}{ {6n}^{4} }  - \lim_{n\to\infty}\dfrac{ {n}^{2}  {(n + 1)}^{2} }{4 {n}^{4} }  + \lim_{n\to\infty}\dfrac{n(n + 1)(2n + 1)}{6 {n}^{4} }

 =  \rm \: \lim_{n\to\infty}\dfrac{(1 + \dfrac{1}{n} )(2 + \dfrac{1}{n}) }{6}  - \lim_{n\to\infty}\dfrac{ {(1 + \dfrac{1}{n} )}^{2} }{4}  + \lim_{n\to\infty}\dfrac{(1 + \dfrac{1}{n} )(2 + \dfrac{1}{n} )}{6n}

 \rm :  \implies \:\dfrac{2}{6}  - \dfrac{1}{4}

 \rm :  \implies \:\dfrac{1}{3}  - \dfrac{1}{4}

 \rm :  \implies \:\dfrac{4 - 3}{12}

 \rm :  \implies \:\dfrac{1}{12}

Similar questions