Math, asked by AnanyaBaalveer, 17 days ago

Evaluate the following limit
\large\underline{\sf{lim_{t \rightarrow  - 3} \frac{6 + 4t}{ {t}^{2} + 1 } }}
\large{\sf{ lim_{x \rightarrow 0} \frac{x}{3 -  \sqrt{x + 9}  } }}

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-1}}

Given expression is

\rm \: \displaystyle\lim_{t \to - 3}\rm  \: \frac{6 + 4t}{ {t}^{2} + 1 }  \\

On substituting directly t = - 3, we get

\rm \:  =  \: \dfrac{6 + 4( - 3)}{ {( - 3)}^{2} + 1 }

\rm \:  =  \: \dfrac{6  - 12}{ 9 + 1 }  \\

\rm \:  =  \: -  \:  \dfrac{6}{10}  \\

\rm \:  =  \: -  \:  \dfrac{3}{5}  \\

Hence,

\rm\implies \:\boxed{ \rm{ \:\rm \:\displaystyle\lim_{t \to - 3}\rm  \: \frac{6 + 4t}{ {t}^{2} + 1 }   =  \: -  \:  \dfrac{3}{5} \:  \: }}  \\

 \red{\large\underline{\sf{Solution-2}}}

Given expression is

\rm \: \displaystyle\lim_{x \to 0}\rm \:  \frac{x}{3 - \sqrt{x + 9} } \\

If we substitute directly x = 0, we get

\rm \: =  \:  \dfrac{0}{3 - \sqrt{0 + 9} } \\

\rm \: =  \:  \dfrac{0}{3 - \sqrt{9} } \\

\rm \: =  \:  \dfrac{0}{3 - 3 } \\

\rm \: =  \:  \dfrac{0}{0 } \\

which is indeterminant form.

So, Consider again

\rm \: \displaystyle\lim_{x \to 0}\rm \:\frac{x}{3 - \sqrt{x + 9} } \\

On rationalizing the denominator, we get

\rm \:  = \displaystyle\lim_{x \to 0}\rm \:\frac{x}{3 - \sqrt{x + 9} } \times  \frac{3 +  \sqrt{x + 9} }{3 +  \sqrt{x + 9} }  \\

\rm \:  = \displaystyle\lim_{x \to 0}\rm \:\frac{x(3 +  \sqrt{x + 9} )}{3^{2}  - (\sqrt{x + 9})^{2}  }

\rm \:  = \displaystyle\lim_{x \to 0}\rm \:\frac{x(3 +  \sqrt{x + 9} )}{9 - (x + 9)}

\rm \:  = \displaystyle\lim_{x \to 0}\rm \:\frac{x(3 +  \sqrt{x + 9} )}{9 - x - 9} \\

\rm \:  = \displaystyle\lim_{x \to 0}\rm \:\frac{x(3 +  \sqrt{x + 9} )}{ - x} \\

\rm \:  =  -  \: \displaystyle\lim_{x \to 0}\rm \:(3 +  \sqrt{x + 9}) \\

\rm \:  =  -  \: \:(3 +  \sqrt{0 + 9}) \\

\rm \:  =  -  \: \:(3 +  \sqrt{9}) \\

\rm \:  =  -  \: \:(3 +  3) \\

\rm \:  =  \:  -  \: 6 \\

Hence,

\rm\implies \:\boxed{ \rm{ \:\displaystyle\lim_{x \to 0}\rm \:\frac{x}{3 - \sqrt{x + 9} } =  - 6 \:  \: }} \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{\displaystyle \rm\lim_{x \to0} \frac{sinx}{x}  = 1}\\ \\ \bigstar \: \bf{\displaystyle \rm\lim_{x \to0} \frac{tanx}{x}  = 1}\\ \\ \bigstar \: \bf{\displaystyle \rm\lim_{x \to0} \frac{log(1 + x)}{x}  = 1}\\ \\ \bigstar \: \bf{\displaystyle \rm\lim_{x \to0} \frac{ {e}^{x}  - 1}{x}  = 1}\\ \\ \bigstar \: \bf{\displaystyle \rm\lim_{x \to0} \frac{ {a}^{x}  - 1}{x} = loga}\\ \\  \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Similar questions