Math, asked by AestheticSky, 3 days ago

Evaluate the following limit:-

\sf\displaystyle \lim_{x \to 0} \dfrac{\sin\bigg(\pi\cos^{2}x\bigg) }{x^{2} }

No go ogled contents please!

Answers

Answered by ajr111
57

Answer:

\huge{\text{$\pi$}}

Step-by-step explanation:

Given :

\mathrm{\lim \limits_{x \rightarrow 0} \dfrac{sin\bigg(\pi cos^2x\bigg)}{x^2}}

To find :

The value of the given limit.

Solution :

\longmapsto \mathrm{\lim \limits_{x \rightarrow 0} \dfrac{sin\bigg(\pi cos^2x\bigg)}{x^2}}

We know that,

\boxed{\mathrm{cos^2x = 1 - sin^2x}}

\implies \mathrm{\lim \limits_{x \rightarrow 0} \dfrac{sin\bigg(\pi (1-sin^2x)\bigg)}{x^2}}

\implies \mathrm{\lim \limits_{x \rightarrow 0} \dfrac{sin\bigg(\pi - \pi sin^2x\bigg)}{x^2}}

We know that,

\boxed{\mathrm{sin(\pi - x) = sinx}}

\implies \mathrm{\lim \limits_{x \rightarrow 0} \dfrac{sin\bigg(\pi sin^2x\bigg)}{x^2}}

Now multiplying and dividing numerator and denominator with πsin²x

\implies \mathrm{\lim \limits_{x \rightarrow 0} \dfrac{sin\bigg(\pi sin^2x\bigg)}{x^2} \times \dfrac{\pi sin^2x}{\pi sin^2x}}

Rearranging, we get,

\implies \mathrm{\lim \limits_{x \rightarrow 0} \dfrac{sin\bigg(\pi sin^2x\bigg)}{\pi sin^2x} \times \dfrac{\pi sin^2x}{x^2}}

We know that,

\boxed{\mathrm{\lim \limits_{h \rightarrow o} \dfrac{sinh}{h} = 1}}

Here, we have 2 limits with πsin²x and x² in place of h

So,

\implies \mathrm{\Bigg(\lim \limits_{x \rightarrow 0} \dfrac{sin\bigg(\pi sin^2x\bigg)}{\pi sin^2x}\Bigg) \times \pi \times \Bigg(\lim \limits_{x \rightarrow 0} \dfrac{sin^2x}{x^2}\Bigg)}

\implies{\mathrm{1 \times \pi \times 1}}

\implies \underline{\underline{\mathrm{\pi}}}

\therefore \underline{\boxed{\mathbf{\lim \limits_{x \rightarrow 0} \dfrac{sin\bigg(\pi cos^2x\bigg)}{x^2} = \pi}}}

Hope it helps!!

Answered by Anonymous
0

The movement of the body or object or a particle, that is following a circular path is called a circular motion. Now, the motion of a body or object or a particle moving with constant speed along a circular path is called Uniform Circular Motion.

Similar questions