Math, asked by Itzheartcracer, 1 month ago

Evaluate the following limits
\sf (i) lim_{x\to0}\dfrac{sin\;ax}{sin\;bx} \bigg(a,b\neq0\bigg)
Or,
\sf (ii)lim_{x\to0}\dfrac{sin\;ax}{bx}
[Note - If you know any one you may do but better to do both]

Answers

Answered by ScanTxN
4

HOPE IT HELPS!

Thanks for asking.

Attachments:
Answered by mathdude500
7

\large\underline{\sf{Solution-(i)}}

Given function is

\rm :\longmapsto\:\displaystyle\lim_{x \to 0} \frac{sinax}{sinbx}

If we substitute directly x = 0, we get

\rm \:  =  \:\dfrac{sin0}{sin0}

\rm \:  =  \:\dfrac{0}{0}

which is indeterminant form.

So,

\rm :\longmapsto\:\displaystyle\lim_{x \to 0} \frac{sinax}{sinbx}

can be rewritten as

\rm \:  =  \:\displaystyle\lim_{x \to 0}\dfrac{\dfrac{sinax}{ax}  \times ax}{\dfrac{sinbx}{bx} \times bx }

can further rewritten as

\rm \:  =  \:\displaystyle\lim_{x \to 0}\dfrac{\dfrac{sinax}{ax}  \times a}{\dfrac{sinbx}{bx} \times b}

\rm \:  =   \: \dfrac{a}{b} \:\displaystyle\lim_{x \to 0}\dfrac{\dfrac{sinax}{ax}}{\dfrac{sinbx}{bx}}

\rm \:  =  \:\dfrac{a}{b} \: \dfrac{\displaystyle\lim_{x \to 0} \frac{sinax}{ax} }{\displaystyle\lim_{x \to 0} \frac{sinbx}{bx} }

We know,

\rm :\longmapsto\:\boxed{ \tt{ \: \displaystyle\lim_{x \to 0} \frac{sinx}{x}  = 1 \: }}

So, using this, we get

\rm \:  =  \:\dfrac{a}{b} \times \dfrac{1}{1}

\rm \:  =  \:\dfrac{a}{b}

Hence,

 \red{\rm :\longmapsto\:\boxed{ \tt{ \: \displaystyle\lim_{x \to 0} \frac{sinax}{sinbx} =  \frac{a}{b} \: }}}

 \green{\large\underline{\sf{Solution-(ii)}}}

Given function is

\rm :\longmapsto\:\displaystyle\lim_{x \to 0} \frac{sinax}{bx}

If we substitute directly x = 0, we get

\rm \:  =  \:\dfrac{sin0}{0}

\rm \:  =  \:\dfrac{0}{0}

which is indeterminant form.

So,

\rm :\longmapsto\:\displaystyle\lim_{x \to 0} \frac{sinax}{bx}

can be rewritten as

\rm \:  =  \:\dfrac{1}{b}\displaystyle\lim_{x \to 0} \frac{sinax}{x}

\rm \:  =  \:\dfrac{1}{b}\displaystyle\lim_{x \to 0} \frac{sinax}{ax}  \times a

\rm \:  =  \:\dfrac{a}{b} \: \displaystyle\lim_{x \to 0} \frac{sinax}{ax}

We know,

\rm :\longmapsto\:\boxed{ \tt{ \: \displaystyle\lim_{x \to 0} \frac{sinx}{x}  = 1 \: }}

So, using this identity, we get

\rm \:  =  \:\dfrac{a}{b} \times 1

\rm \:  =  \:\dfrac{a}{b}

Hence,

 \green{\rm :\longmapsto\:\boxed{ \tt{ \: \displaystyle\lim_{x \to 0}  \bf \: \frac{sinax}{bx} =  \frac{a}{b} \: }}}

More to know -

 \red{\rm :\longmapsto\:\boxed{ \tt{ \: \displaystyle\lim_{x \to 0}  \bf \: \frac{sinx}{x}  = 1 \: }}}

 \blue{\rm :\longmapsto\:\boxed{ \tt{ \: \displaystyle\lim_{x \to 0}  \bf \: \frac{tanx}{x}  = 1 \: }}}

 \green{\rm :\longmapsto\:\boxed{ \tt{ \: \displaystyle\lim_{x \to 0}  \bf \: \frac{1 - cosx}{x}  = 0 \: }}}

 \red{\rm :\longmapsto\:\boxed{ \tt{ \: \displaystyle\lim_{x \to 0}  \bf \: \frac{ {e}^{x}  - 1}{x}  = 1\: }}}

 \blue{\rm :\longmapsto\:\boxed{ \tt{ \: \displaystyle\lim_{x \to 0}  \bf \: \frac{ {a}^{x}  - 1}{x}  = loga\: }}}

 \green{\rm :\longmapsto\:\boxed{ \tt{ \: \displaystyle\lim_{x \to 0}  \bf \: \frac{log(1 + x)}{x}  = 1\: }}}

Similar questions