Evaluate the following products.(y^2-6)(y^2+7)
Answers
Answer:
(100 + 3) (100 + 7)
Now, by using identity
(x + a) (x + b) = x² + (a+b)*x + ab
So,
x = 100 , a = 3 , b = 7
= (100)² + (3+7)*100 + (3*7)
= 10000 + 1000 + 21
= 11021
.
(110 - 7) (110 - 3)
by using identity
(x + a) (x + b) = x² + (a+b)*x + ab
So,
x = 100 , a = (-7) , b = (-3)
= (110)² + { (-7) + (-3) }*110 + {(-7)*(-3)}
= 12100 + (-10)*110 + 21
= 21200 - 1100 + 21
= 11021
.
➖➖➖➖➖➖➖➖➖➖
.
(90 + 5) (90 + 6)
by using identity
(x + a) (x + b) = x² + (a+b)*x + ab
So,
x = 90 , a = 5 , b = 6
= (90)² + (5+6)*90 + (5*6)
= 8100 + 990 + 30
= 9120
.
(100 - 5) (100 - 4)
by using identity
(x + a) (x + b) = x² + (a+b)*x + ab
So,
x = 100 , a = (-5) , b = (-4)
= (100)² + { (-5) + (-4) }*100 + 20
= 10000 + (-9)*100 + 20
= 10000 - 9000 + 20
= 10020 - 900
= 9120
.
➖➖➖➖➖➖➖➖➖➖
.
(100 + 4) (100 - 4)
by using identity
(x + a) (x + b) = x² + (a+b)*x + ab
So,
x = 100 , a = 4 , b = (-4)
= (100)² + { 4 + (-4) }*100 + 4*(-4)
= 10000 + (4 - 4)*100 - 16
= 10000 + 0*100 - 16
= 10000 - 16
= 9984
.
(90 + 14) (90 + 6)
by using identity
(x + a) (x + b) = x² + (a+b)*x + ab
So,
x = 90 , a = 14 , b = 6
= (90)² + (14 + 6)*90 + (14*6)
= 8100 + 20*90 + 84
= 8100 + 1800 + 84
= 9984