Math, asked by farhan0784, 6 months ago

Evaluate the following:

sin60⁰ cos30⁰ + sin30⁰ cos60⁰​

Answers

Answered by Anonymous
2

Putting the values of all the trigonometric ratio of 0⁰,30⁰,45⁰, 60⁰ and 90⁰

 \frac{ \sqrt{3} }{2}  \times  \frac{ \sqrt{3} }{2}   + \frac{1}{2}  \times  \frac{1}{2}

 \frac{3}{4}  +  \frac{1}{4}

Now taking L.C.M

L.C.M is 4

 \frac{3 + 1}{4}

 \frac{4}{4}

1

Additional Information:

The values of all the trigonometric ratio of 0⁰,30⁰,45⁰, 60⁰ and 90⁰are in the table given above in attachment which is used in solving these questions.

Attachments:
Answered by priyanshisoliya05
8

sin 60 * cos (90-60) + sin 30 . cos(90-30)

sin 60 *sin 60 + sin 30* sin30

sin²60 + sin² 30

{root 3/2 }² +(1/2)²

3/4 + 1/4

(3+1)/4

4/4

1

or

Answer:

sin60 . cos30+ sin30 . cos60

Step-by-step explanation:

Given : Expression -- sin60⋅cos30+sin30⋅cos60

To find : The solution of the given expression?

Solution :

sin60⋅cos30+sin30⋅cos60

Applying property,

sinAcosB+cosAsinB=sin(A+B) 

sin60⋅cos30+sin30⋅cos60=sin(60+30)

sin60⋅cos30+sin30⋅cos60=sin(90)

We know, \sin(90) = 1

sin60⋅cos30+sin30⋅cos60=1

Similar questions